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From the Classical Field with Sources to the
Multipole Matrix Elements
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Starting with the classical interaction of the electromagnetic field with
sources and then quantizing, the interaction Hamiltonian is expanded in
multipoles. Explicit expressions for the multipole operators are obtained.
Transformation properties, under time reversal and Hermitian conjugation,
of nuclear states and multipole operators are studied.

1. INTRODUCTION

An important part of the information on nuclear properties has been
extracted from studies of electromagnetic transitions.

In this article we start with the well-understood classical interaction of
the electromagnetic field with charges and currents. The classical equations
are quantized and the interaction Hamiltonian expanded in terms of multi-
poles. The explicit expressions of the electromagnetic multipole operators
will be obtained and properties of their matrix elements studied. One-photon
states of definite angular momentum will be described since they play an
important role in nuclear phenomena. The formalism is derived from first
principles, and we have tried to make the discussion reasonably self-contained.
Special reference will be made to phase conventions, and the transformation
properties of nuclear states and multipole operators, under time reversal and
Hermitian conjugation, will be discussed.

The contents of the paper are as follows:

1. Introduction
2. The Description of the Free Radiation Field in Hamiltonian Form
3. The Description of the Field with Charges, in Hamiltonian Form
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4, Quantization of the Free Radijation Field

. The Interaction Hamiltonian between the Radiation Field and Non-
relativistic Charges

. The Nucleus as a System of Nonrelativistic Spin-} Particles

. Emission of Electromagnetic Radiation

. The Angular Momentum and Parity of the Photon

. The Multipole Operators

. The Behavior of the Multipole Operators under Hermitian Conjuga-
tion and Time Reversal: Reality of the Matrix Elements
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2. THE DESCRIPTION OF THE FREE RADIATION FIELD
IN HAMILTONIAN FORM

A useful gauge to study radiation phenomena is the Coulomb gauge
divA =0 2.0

The so-called radiation or transverse fields are derived from a vector potential
satisfying this relation. Furthermore, in a charge-free region, it is possible to
transform the scalar potential ¢ to zero. The electromagnetic field can then be
described by the vector potential A(r, ¢), satisfying the wave equation

1 22A

2 e o— ———
VA~ 555 =0 @2

The electric and magnetic fields are then given by

10A
= —% 2.3
# = curl A (2.4)

This is essentially a description using a continuous set of variables.
Keeping in mind that our purpose is the quantization of the electromagnetic
field (Section 4) a more convenient way of describing the electromagnetic
field, in Hamiltonian form, is by confining the field in a large cube of volume
V = L?. Requiring periodic boundary conditions on opposite faces of the
cube, we can expand A(r, £) in terms of a set of discrete oscillating modes with
different characteristic frequencies. With 1, j, k the unit vectors along the
edges, the required boundary conditions

AT + 14, ) = A(r + I, £) = A(r + Lk, 1) = A(r, 1)

are satisfied if the wave vector

k = 27? (nd + nf + nzf‘)
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is restricted in such a way that each » may only take integer values from —oo
to +o0.
Expanding, at a given instant, in Fourier series in that cube

2
360 =3 3 (Z5) a0t + atibe ] @5)
k

k o0=1,2

stressing that A is real. The Fourier coefficients
A1) = ax,(0)e ™" (2.6)

with w;, = |k|e, are a discrete set of variables characterizing the field and
(2nfic?/w, LB)1? a convenient normalization coefficient.

The expansion in terms of the complete orthonormal set of plane waves
L~32g, e * {3 just a convenient mathematical device (depending on the
geometry of the box and boundary conditions), and does not involve a
restriction to the problem. The unit vectors &, are the polarization vectors,
and the Coulomb gauge condition (2.1) demands that A(r, ) is a transverse
vector.

From (2.3) one may easily find

: 2
560 =13 3 (25) e - at,0be "] @)

k o=1,2

and from, (2.4)

2\1
H 1) =i, (%ﬂ%) K X [ (08™ — (1))
k 0=1,2
(2.8)
Using (2.7) and (2.8) we find for the energy of the field
| @ rnar =13 S e, + atas) 29)
cube k 0=1,2

showing that H is a conserved quantity. Although classically a4, and af,
commute, we kept the order aa* and a*a because later we shall extend the
interpretation to noncommuting operators.

To show clearly the analogy with a set of uncoupled oscillators, thus
justifying the oscillator expansion of the field, it is convenient to replace the
noncanonical variables @, and of; by the real linear combinations

04(1) = (2—16)”2[@0«) T 0] 2.10)

Po(t) = zw(iﬁ—) a0 — ()] @.11)
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We obtain from (2.9)

H=142 3 (P& + 0,20%) (2.12)
k o=1,2
Calculating
oH .
ang = wk2Qka = —Py,
and (2.13)

oH
'a'ITk;"Pko'_ Qko’

we see that H corresponds to the Hamiltonian for the field and that P, and
Oy, are canonically conjugate momenta and coordinates.

Using the index X for each mode associated with a wave vector k and a
polarization o

H=73 H, (2.14)

where H, reminds us of the Hamiltonian of the oscillator in classical mech-
anics, of frequency w, and unit mass.

Thus, the radiation field behaves, formally, as an infinite set of indepen-
dent radiation oscillators. In Section 4 this description of the radiation field in
Hamiltonian form will make simple the quantization of the field, by analogy
with the classical problem, replacing the dynamical variables P and Q by
operators and imposing on them the usual commutation rules.

3. THE DESCRIPTION OF THE FIELD WITH CHARGES,
IN HAMILTONIAN FORM

The nonrelativistic Hamiltonian for a system of particles of charge ¢,
described by the canonical variables g, and p,, in a field having the potentials
&(r,, ) and A(r,, ) at the position of the kth particle, has the form

H = Ek: {-271”; [pk —~ %A(rk, zf)J2 + eb(rs, t)} (3.1)

It should be noted that in ¢ and A contributions of two sources are
included. One is made up of all the charges of our system (which we shall
call system A). The other consists of external sources (which we shall call
system B), whose motion we shall assume to be known. We shall suppose the
whole system (A + B) to be closed. What we loosely call H,, and is in fact
the Hamiltonian for system A in the presence of system B, may be found
from the Hamiltonian for the two coupled systems if we take into account
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that the motion of system B corresponds to known functions of time (Landau
and Lifshitz, 1960). So, in some aspects of the use of the Hamiltonian (3.1) we
may “eliminate” the contribution brought in by the external field. This does
not mean that the motion of system B is supposed to be independent of the
motion of system A, but only that the motion of system B is assumed to be
given by known functions of time. As we are, for the moment, interested in
applications involving Hamilton’s equations, we may, temporarily, dispense
with the contribution of the external potential (¢°, A®) to the Hamiltonian
(3.1). In this way we shall obtain first results concerning only the field pro-
duced by the particles of our system and later, in the final result, we can
reintroduce the external potential.

The potentials ¢ and A can be made to satisfy the Lorentz gauge (which
is in some way a kind of canonical transformation in the sense that it leaves
Maxwell’s equations invariant)

. 196
div A + PirTie 0 3.2

Using this gauge we obtain the following uncoupled equations equivalent to
Maxwell’s equations:

1 &%

1 22A 4z

2A - i .
VA - 57 i (3.4

Next we shall write these equations in the usual canonical form of
classical dynamics, since we are aiming at the transition to quantum mech-
anics. It is known that a vector field A can be split in longitudinal and
transverse parts

A=AT + AL (3.5)

such that
divAT =0 (3.6)
curl A =0 3.7

Assuming the field confined in a large cube we may develop into Fourier
series (detailed discussion in Heitler, 1954)

AT = Z 0,(1)AL(T) (3.8)
AL = 3 0()A,X) (3.9)
b= > Ooy(t)d,(1) (3.10)
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with A,, A,, and ¢, representing complete orthogonal sets (respectively,
transverse, longitudinal, and scalar functions) satisfying the wave equation
and periodic boundary conditions.

Expressing the continuous charge densities in terms of “point” charges
e, atr,

p(r) = ; ed(r — 1)

i = Z exVid(r — 1y
k
we may write
[ im@er =3 an-aw @3.11)
cube k

and

[ s =3 eputr) (3.12)

k

and together with the orthogonality conditions for the A,, A,, and ¢, we may
write for (3.3) and (3.4)

Q)\ + w20, = %Z ey An(Ty) (3.13)
0, + w0, = 1 3. e Adlr) (3.14)
Dos + 02005 = 0, €8,(T) (3.15)

k

We should bring to attention, at this stage, that in Section 2 we saw that
the radiation field could be described by canonical variables 0, and Py, and
as a consequence of (2.13)

Owo + @20k = 0 (3.16)

Therefore the equations of motion are now more complicated, as expected,
owing to the presence of charged particles.

Our problem now is to find a Hamiltonian function that gives a complete
description of the system. That is, from it we should obtain the correct
equations of motion, for the particles and for the field, using Hamilton’s
equations. A plausible form for this Hamiltonian, suggested by comparison
of the left-hand sides of equations (3.13), (3.14), and (3.15) with the results of
Section 2, would be a sum of terms of the form 3(P? + «?2Q?) of transverse,
longitudinal, and scalar origin. The right-hand sides would suggest a con-
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tribution from the Hamiltonian (3.1). We take as the nonrelativistic
Hamiltonian

H=3 {5’11—1; [pk ~ % A, t)r + eud(er z)}
12 (B2 + w200 + 12, (P + w20
- 32 (PE + 0,°0%) 3.17)
As mentioned above, the justification for this Hamiltonian is that it works.

Unlike in the Lorentz gauge where A and ¢ satisfy (3.4) and (3.3) it is
found that in the Coulomb gauge (2.1) the vector potential satisfies

1 &2A7 4
2AT T e 3T
V2A ol s (3.18)
and the scalar potential ¢ satisfies, at each instant, Poisson’s equation
V2(r, 1) = —4mp(r, 1) .19

The vector potential is purely transverse since from div A* = 0 and curl A*
= ( we may write A" = 0, The vector j7 is the transverse component of the
current density.

The Coulomb gauge has the disadvantage compared with the Lorentz
gauge of being noncovariant, but it is more convenient to study the radiation
field.

The solution for the equation (3.19) is

$(r, 1) = fl” . 1) il (3.20)

So. in this gauge the longitudinal part of A has been entirely eliminated from
the equations of motion and the scalar potential reduces to the instantaneous
Coulomb interaction of the charges.

In the Coulomb gauge the Hamiltonian (3.17) can be written

1 1
H = Z 2m [Plc - "“A(rk, t)] + 52 (.P)\2 -+ wAzQ;F) + Vcoul

(3.21)
with
=2 0, (3.22)

and using the Dirac delta function

Voo = 5 | o6 00908, 1) P = 5 S, 5 (3.23)
2 2.4

A
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where it is understood that i = k terms, representing the infinite self-energy,
are omitted. The insufficient hypothesis we made about the charged particles
makes the present calculations unsuitable for the discussion of self-energy
problems.

Now we might endeavor to give an interpretation of the Hamiltonian
(3.21) in terms of energy. The first term corresponds to the energy of the
particles including the interaction energy between the charges and the
radiation. The second term corresponds to the energy contained in the
radiation field in the absence of sources. The third term is the static Coulomb
interaction energy between the charges.

To include an external potential (¢¢, A®) we insert >, e;¢,° in (3.21) and
consider in (3.22)

A=§QAAA+A6

4. QUANTIZATION OF THE FREE RADIATION FIELD

Once we have formally reduced the radiation field to an assembly of one-
dimensional harmonic oscillators, the quantization is straightforward.

In the Heisenberg picture, the transition to quantum mechanics for a
system having a classical analog can be achieved replacing the canonical
variables Qy, and Py, by operators, changing in time, and satisfying the
commutation relations

[Pka> Qk’a’] = —iﬁakk’aaa’
[de: Qk’o‘] = [Pka’ Pk’a’] =0

This procedure is based on the correspondence principle.
However, it is found that two non-Hermitian operators, corresponding
to o, and a¥, (Section 2), and introduced by operator relations

@.1)

1 \u2 )
s = (7)) Qs + iPic) 42
and
1 \uz .
ohe = () " @00 = P 43
are more convenient. Their commutation rules follow from (4.1)

[akq: aL'a’] = Skk'soa’

4.4)
[ak¢7> ak’a"] = [‘ﬁ«n a;;’a’] =0 (
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From (2.9) the Hamiltonian operator for the radiation field, without the
zero-point energy, reduces to
H=> > hoal,o, (4.5)
kK 0=1,2
For the purposes with which we are concerned, the infinite zero-point energy
of the radiation field, 3y, #w,/2, corresponds to a constant term, which can-
cels out, being therefore unobservable.
From the Heisenberg equations of motion for ay(z)

dog, 1 ,
2 — = [a(0), H] = — iy (1)
we obtain
aka(t) = ak”(o)e—imkt (4'6)
and identically
afo(f) = af,(0)e'*et 4.7

The operators a,,(0) and af,(0) correspond to the Schrddinger picture.
The Hermitian operator

Nka = a;(cakd (48)

is the number operator with eigenvalues n,, = 0, 1, 2,... corresponding to
the number of vibrational quanta, in the state ko, present in the cube. The
eigenvectors [, > of the observable N, are the complete orthonormal basis
of the representation {Ny,}.

Apart from a trivial phase

a};ml ey I’lkm, « .> = (nkm + 1)1121 veny nkm + 1, . .>
4.9
Q] s Py > = M2 e, — 1,00
and
a, )"
Iy oy 15,5 = T T80 10,0,0,... (4.10)
A (n)\-)

This discussion enables us to introduce a photon picture of the electro-
magnetic field. The state vector for the radiation field, |ay, ng, ..., 1, ...,
does not depend on time, since we found the Heisenberg picture to be a
convenient representation. So, the time dependence is thrown into the field
operators.

The eigenvalue problem for the Hamiltonian (4.5) is closely related to the
eigenvalue problem for Ny,

E=Y > mio, @.11)

k 0=1,2
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Changing the complex coefficients (numbers) in (2.5) into operators
al, and ay,, which satisfy the commutation relations (4.4), we go from the
classic to the quantic, throwing the function A(r, ) into an operator, depen-
dent on the parameters r and ¢, which acts on vectors of the N representation.
This vector field operator is in the Heisenberg picture

2
A0 =3 3 () e + e ) @12
k o=1,2 L4

Attending to (2.7), (2.8) and (2.9) it is straightforward to see that the normal-
ization factor has been chosen such that A corresponds to the energy fiw of
one photon in the volume L? of the field.

The vector potential operator in the Schrodinger picture results from
(4.12) at, say, t = 0.

It is of interest to point out that the number operator, N,,, does not
commute with the operators A(r, ), &(r, ¢) and (T, ).

Using for the momentum operator of the radiation field an operator
expression identical to the classical

& x H d°r 4.13)

41TC cube

and symmetrizing to ensure the Hermitian form, since & and 3# do not
commute, we find
P=> > fkal,ay (4.14)
k o=1,2
We have dropped a term D}, #k/2 since the sum is carried out symmetrically
on k. Therefore, the states of (4.10) are also eigenvectors of the radiation

momentum operator.
Associated with a vector field there is an angular momentum operator

J = L + S which is the generator of its rotations. It might be shown (de
Shalit and Talmi, 1963) that the expectation value of J, for the electromagnetic
field corresponds to the z component of the radiation angular momentum as
classically defined by

_— 1 3.
J_%cfrx(g‘x.;f)dr (4.15)

It can be shown (Gottfried, 1966) that the radiation angular momentum
(4.15), as given in classical theory, can be written as
J=L+S (4.16)
where

1 3 a
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and
— 1 3
——cfé’xAdr

Writing these expressions in Hermitian form and passing to quantum mech-
anics by changing to the corresponding operators, we obtain operators L and
S that might be interpreted as representing, respectively, the orbital angular
momentum and the spin of the radiation field. For S we find (Gottfried, 1966)

S = “ihz k(af axs — afoti) 4.17)
X

However, this operator does not commute with H. This difficulty may be
overcome by passing from the linear polarization representation to the circular
polarization representation

fuar = =276y + i8y5)
ooy = 27V2(4yy — ibyy)
It is then possible to introduce new operators @, and a,_, defined by

Z Cuolicr = Z Ertion 4.18)

¢=1,2 A= 1

The new annihilation and creation operators satisfy commutation rules
similar to (4.4) and we may write

S=> > Nika,a (4.19)
k A=z%1

N = hatin (4.20)

H=73 3 foahan 4.21)
kK A==x1

P=> > fkaan (4.22)
kK A=%1

These operators commute with each other and so it is possible to specify
simultaneously their eigenvalues. Corresponding to the circular polarization
unit vectors &, the operators @, and af, correspond to the annihilation and
creation of right-handed (A = +1) or left-handed (A = —1) circularly
polarized photons.

Let us consider now a one-photon state defined by

kA> = af]0>, A= 1 (4.23)
It can be shown that for this state

@Rk =0
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This is not a surprising result for an orbital angular momentum acting on a
state described by a plane wave.
From (4.19) it follows that

SRk = MKY, A= +1

It is of interest to point out, at this stage, that as a result of the quantiza-
tion procedure we were led to the photon picture of the radiation field. The
occupation states represent a number of particles, i.e., states associated with
some event and corresponding to a set of quantum numbers. We may inter-
pret the result (4.19) as describing the spin of the radiation field in terms of a
total number of photons each of them described in terms of helicity + 1 and
—1.

For the component of the total angular momentum of the radiation field
along the direction of propagation, and for a one-photon state we have

TR = MikYy, A= +1 (4.24)

We say that the photon helicity, defined as the projection of the total angular
momentum of the photon along the direction of propagation, can only have
the values +1 and —1. The value zero is not possible. This is a property
characteristic of spin-1 particles with zero rest mass, and it leads to an asso-
ciation between the quantum of the radiation field and a particle of mass 0
and spin 1.

Using the operators introduced in (4.18) we can easily extend the trans-
verse vector field operator A(r, ¢) (4.12)

2ufic?\ V2. o fe s
A, 1) = z Z ( ) [aalrre™® T 06D + af, £F e~ 1T - o)

3
kK A=x1 wL

(4.25)

The set |{n,,}> is very convenient to use in cases involving perturbation
theory calculation with variation of the number of photons by 1. It does not
follow that this is the only representation possible or even that it always offers
the best insight in radiation problems. The coherent states (Glauber, 1963;
Carruthers and Nieto, 1965) are very useful in certain radiation problems
because they are the quantum states that more closely approximate the
classical limit. So far we have used the number representation, but here the
expectation values of &, 3£, and A vanish

My, Ngy .oy s BBy, g,y > =0

since these operators have no diagonal matrix elements in that representation.
But the classical description of a system should be valid as obtained from the



Classical Field to Multipole Matrix Elements 55

quantum description when the quantum numbers are huge compared to
unity. So the correspondence principle cannot be applied here because no
matter how large the n’s are we do not obtain results valid in the classical
limit. It is, nevertheless, possible to construct states that are the quantum
analogs of the classical, by superposition, in an appropriate way, of energy
eigenstates of the harmonic oscillator. This coherent state |e) may be defined
as an eigenstate of the operator

aloy = afe)

For the operator a no such relation exists because it would imply <{#|e) = 0
for any n.

The coherent state, defined for all complex numbers «, forms a complete
nonorthogonal set (@ is a non-Hermitian operator)

X n
ey = e~ lei®i2 Z (fﬁ)m |n) = e~lei¥2eaat|0y
n=0 *

where |0) is the ground state of the oscillator and e~'*'*/2 a normalization
factor.

The probability that the energy of the coherent state is #fiw follows a
Poisson distribution

Knlep|? = (,(:1,!2)” e lal?2

The coherent state represents a minimum uncertainty wave packet state
because it minimizes the product AgAp.
The expectation values of ¢ and &' in this state are

{ela|e) = «
{e|a|e) = o*
For a multimode state
Jotg, gy oy Opy oo = H e""‘A‘z’ze“A“110>
with "
Aoy, gy e oy By = |y, 0y, LD
If each mode is in a coherent state the mean value of, say, &(r, ¢) is

<0€1,. sy Oy e .]éb(r, t)locl,. cay Opy e s >

i 2mhic?\ 12 .
= = — Wi [, GHET =00 _ o % p— KT~ wyb)
[+ (J))\LS AL A

A

and identically for ##(r, ) and A(r, ¢), looking like the classical field (2.7).
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5. THE INTERACTION HAMILTONIAN BETWEEN THE
RADIATION FIELD AND NONRELATIVISTIC CHARGES

In view of the result (3.21) the nonrelativistic Hamiltonian for a system
of particles (without spin) plus radiation field may be written, in the Schréd-
inger picture,

_ 1 e 2
H= Z T, [Pk - ?A(rzc)]

+ Hrad + V(rb r2:'~'3 rk:~") (5.1)

where V is the interaction potential between the particles and H,,4 can be
written in the form (4.21).

Writing
Foas, = 3, 5 02+ V (5:2)
the Hamiltonian (5.1) can be written as
H = Hpopy + Higa + Hiny (5.3)
The term
Huo = =3 5 (A + A B + 3 5ot A2 (5.4)
k 7K k K

describing the interaction between the field and particles, is the perturbing
energy on the unperturbed Hamiltonian

H, = Hpart + Hyou (55)
whose eigenfunction can be written in the form
|1F> = |i>pa.rtl cees M, s ->rad (56)

The second term of H,,. (5.4) gives rise to products of the form a,a .,
Gerllrns Bnthen> and af,al.,. and must be considered in processes involving
two photons. Otherwise this term is of second order in e and can be neglected
in perturbation calculations taken to first order in e. In such a case we may
take simply

€x
Hyw = =2 50 G A + A-p) .7

In fact, since

[ps, f(q, P = —ifi % (5.8)
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with j(1, 2, 3) referring to components, we may write in the Coulomb gauge
P-A=Ap

Considering a quantum mechanical system of particles with masses m,
and charges e,, the charge-density operator is given by a sum of & functions.
For a system of protons and neutrons

Pop®) = > eg,(k)3E — 1) (5.9)

where g)(k) = 1 or 0 for a proton or a neutron, 1, is a position operator and
r, which is not an operator, indicates the point of space where we observe the
charge density.

The charge density in a state is given by the expectation value of (5.9) in
that state. This expectation value corresponds to the sum of the probabilities
of finding each of the charges, and for all possible configurations, at the
position denoted by r.

Similarly we may define a current-density operator

i) = 3 %0 1,566 — 1) + 8¢ ~ rpu (5.10)

It is convenient to symmetrize since the expression contains the product of
noncommuting Hermitian operators and we want to ensure that jo(r) is
Hermitian. For the simple case of a single particle it can be shown, using
(5.8) and the property of the & function f(x)8'(x — a) = —f'(x)8(x — a),
that

| P @i dr, =~ B OVe0) - #VE @] (51D

We might say that this gives the idea of introducing a particle current-density
operator (5.10) whose expectation value is the probability density current
shown on the right side of (5.11).

In terms of the current-density operator j.,(r) we may write Hy (5.7), in
the Schrédinger picture, as

a8 = =3 [ @r 9 g, 50 - 1AW + 56 - IA®-B

[ 1o A@ @ (512)

describing the coupling of the quantized radiation field to the current density
of the particle system.
In the following we will omit the subscript “op.”
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6. THE NUCLEUS AS A SYSTEM OF
NONRELATIVISTIC SPIN-} PARTICLES

Just as classically, a spinning charge distribution corresponds to a
magnetic moment, we associated in quantum mechanics a magnetic moment
with the spin. In the nucleus the total current operator has a contribution
from the “convection” current and a contribution from the “spin” current
coming from the intrinsic magnetic moment of the nucleons. A magnetic
moment density p is equivalent to a current (Jackson, 1962)

jur = ¢V x o 6.1)

For a single particle we define a density operator corresponding to the
intrinsic angular momentum or spin

s(r) = 8(r — ry)fic 6.2)

where o(a,, 0,, 0.) is the operator corresponding to the Pauli matrices acting
on the spin part of a two-component wave function called a spinor. The
expectation value of s(r) is the spin density at the position r.

The magnetic moment of spin density operator for a point charge is
taken as

BE) = 5o 8RS — 1) D 63)

where g, is the spin g factor, with g, = 5.585 for a proton and g, = —3.826
for a neutron.
For a many-particle system

1) = 3 5o £.08E — 1) 5 o) (64)

where o(k) is the operator acting on the spin coordinates of the kth particle.
Calculating the expectation value we integrate for, every k, over the coor-
dinates of the other particles.

The total current density operator is

J@®) = j(@) + eV x u(r) (6.5)

The interaction between the total nuclear current and the quantized
radiation field, in the Schrédinger picture, is

Hi = — f @) A@) d° (6.6)

Once A(r), in the Schrédinger picture, results from (4.25) at, say, ¢ = 0, this
operator only has matrix elements for transitions in which the number of

photons change by 1.
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From the previous considerations as V x p-A = p.- 3, the contribution
to the interaction Hamiltonian of the current resulting from the intrinsic
magnetization can be interpreted as the energy of interaction of the magnetic
moment with the magnetic field.

7. EMISSION OF ELECTROMAGNETIC RADIATION

In accordance with (5.3) and (5.5) we may write, in the Schrédinger
picture,
HS = Hgs + }L'S;It (7.1)

H® contains the description of the two systems, radiating system and radia-
tion field, as noninteracting, and HS , describes their mutual interaction. It is
this interaction, of the nucleus with the external field, which causes transitions
to take place between stationary states of the system. With Hy the Hamiltonian
of the radiating system (nucleus), we may write for the time independent
Hamiltonian HyS

Hos = Hy + Hyaq (7-2)
with eigenfunctions
2% = 1Dn] - ma* * *Draa (7.3)

A convenient way to deal with the problem is to transform the Schrédinger
state

[$5(6)> = D, ealt)e™HME |, 5 (7.4)

n

solution of
lﬁ al¢;§t)> — HSII/IS(Z‘)>

into the interaction picture.
With the superscript I denoting interaction picture we obtain for the
state vectors and perturbation, respectively

[H(2)) = eMRYS()y = 3 ealt) > (7.9

n

and
HL, = eMWHEHS o= GIMH (7.6)

In the interaction picture we obtain

w2 gy &)
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where H,, appears instead of H®, showing that the time development of
l7(¢)) is dictated by the interaction Hamiltonian.

It would be interesting to note, in addition to what we have said in Sec-
tion 3, that the interaction picture is implied in the process of “disregarding
the external world” from our problems.

The equations of motion for the coefficients c,(z) are obtained from (7.7)

% = cn(t )<¢msl int , '/’ns> (7 8)

Let us now consider a nucleus that emits a photon of momentum %k and
helicity A, making a transition from the initial nuclear state |> to the final
state |f> belonging to a discrete spectrum. Supposing that the system is
initially in an eigenstate of H,, (7.2), we may refer to this eigenstate as
;- gy~ - > Tepresenting the product of the nuclear state |i> by the radia-
tion state |- - -y, - - ->. The only final states for which there is a nonvanishing
matrix element of Hy,, are states |f;-- 7y, + 1--->.

We may write for the matrix element involved in (7.8)

<f;...nk)\ + 1]H11nt]i;nk7\'>
_ (27'rh

1/2
w_Z_3) <f’ cRga + 1... |f dar[e(im)HNtJ(r)e“(i/ﬁ)HNf]
k

. gﬁAe—i(k-r—mkt)abli;. S Hgac D
= e UME =B —hopi( fro g 4 1o |SLi5 - mgn- oD (1.9
with
2nhi

Hl, = — ( ) f BrI)- &gl (7.10)
Only the term in af, is present in the matrix element because the correspond-
ing term in ay, cannot contribute. With the final state written on the left, as in
(7.9), the operator adequate to the emission matrix element is the operator
Hhe

Actually, the emission involves a continuum of photon states. Until now
we have been assuming that the nucleus is heavy, localized, and the levels
infinitely sharp, with no linewidth, and so perfectly monochromatic radiation.
In fact this implies neglecting the reaction of the radiation field on the radiat-
ing system, which is not realistic. Perhaps it would be useful to go back to the
approach used in Section 2 to treat the continuous problem. To substitute it
by a discrete problem we confined the field in a cube of volume L3. After
taking advantage of this substitution we keep always in mind that to go back
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to the initial problem we just need to make L increase indefinitely. As we have
seen in Section 2, the values for k, allowed by the periodic boundary con-
ditions, are k = (2#/L)n. When L increases, the allowable k’s approximate a
continuous distribution in k space and the photon states approximate a
continuous energy spectrum. As we are interested, physically, in studying the
emission of a photon within a solid angle dQ, i.e., over a small range of k, we
may write for the number of photon states, of one helicity A, with energy
between E = #w and E + d4E, and in a solid angle dQ about k

L3

paa(E) dE = m

w2
7 dQ dE (7.11)
where pgo E) is called the density of states.

On the other hand, the solution of (7.8) depends critically on the initial
conditions. The standard treatment of first-order time-dependent perturba-
tion theory, leading to Fermi’s golden rule, is restricted to times short
enough to make the probability of transition out of the initial state very small.
That is, ¢,(¢) may be taken as equal to ¢(0) = ! minus small first-order cor-
rections. Obviously these are not the conditions we expect to be satisfied when
studying the decay of a state. So, we will resort to the Weisskopf-Wigner
method assuming an exponential decay law, [¢(2)]2 = e~ T, for the initial
state. The quantity + = I' ! is the mean lifetime of the excited state. Neglect-
ing the level shift we obtain the result

2 .
I'= ZZ 7;‘,' [<fs - ma + 1oo - [FOL[E- - nn - D] panl( By — Ey)
xR

(7.12)

where it is understood we sum over the k in dQ, and pyo(E; — E;) represents
the density of states of emitted photons with energy E = fiw = E; — E,.
Actually, this expression corresponds to the transition probability per second
obtained in first-order time-dependent perturbation theory.

We may write for the matrix element involved in (7.12)

(CHER WS EE 2] SRR PERED

- —(271’1)”2(:1“ + 1 [ @@ e (113)
Wy

The term in (7.13) proportional to n, corresponds to the stimulated emission.
The term that is still present even when », = 0 corresponds to the spon-
taneous emission. This means that the matrix element (7.13) is not necessarily
zero when there are no photons ka already present in the initial state, and so
this explains the emission of a photon by an isolated nucleus when there is no
applied radiation.
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The expression
eUPEJ(r)e UMM = JH(r, 1) (7.14)

appearing in (7.9), is the current density operator in the Heisenberg picture
for an isolated nucleus. We can write a similar expression for p?(r, 1). In the
following we shall omit the superscripts.

When we related the field with sources, in Section 3, we were assuming a
classical localized distribution of charge p(r, ¢) and current J(r, ¢) whose time
dependence could be represented by a superposition of Fourier components.
For our purposes it is sufficient to consider the part with frequency w,
o(r, ) = p(®)e~it and J(r, ) = J(r)e ' where it is assumed to take the
real parts. We may say that passing to quantum mechanics the classical
charge and current densities are replaced by the matrix elements of the
corresponding operators, p(r,t) and J(r, ), between the initial and final
states of the radiating system. So they go into a transition current density

S, D]y = e IEEXFIIm]ED (7.15)

and identically for the charge density.

The above treatment, although good enough for some purposes, does
not take into account the finite size of nucleons as well as meson effects such
as exchange currents (Bohr and Mottelson, 1969).

The finite size of nucleons can be taken into account by a suitable
substitution of the delta function, which appears in the charge-density and
current-density operators, by convenient magnetic and electric form factors.

The presence of nuclear forces, supposed to be originated in the meson
exchange between nucleons, generates exchange currents producing electro-
magnetic effects. Till now we only assumed, explicitly, the Coulomb forces
between the charges. But, of course, for the nucleus the Hamiltonian is
assumed to contain the exchange effects, with the nuclear state being eigen-
state of the meson—nucleon problem.

Even with H containing exchange potentials, if j includes the exchange
current jexcn defined in such a way that

V'jexeh = _(i/h)[Vexch: P]
j is still assumed to satisfy the charge conservation continuity equation (the
spin current does not contribute since it has zero divergence)

. 9 i
V.j= ~% = "I [H, p] (7.16)

with H the Hamiltonian of the nucleus.
The difficulties in handling this problem result from assumptions we
need to describe the meson current distribution.
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Siegert’s theorem (Sachs, 1953) can be invoked for the electric multipole
moments to replace the current operator by the charge density operator. This
theorem depends on the fact that, in the long-wavelength limit, A can be
written approximately as the gradient of a scalar. For a magnetic multipole
this cannot be done. So, the exchange interactions are expected, in good
approximation, to have no important effects in the electric multipole mo-
ments, once the charge distribution can be assumed not to be much affected
by the exchange currents. On the other hand, magnetic multipoles depend on
the current density, Siegert’s theorem does not apply, and the exchange
effects can be important and are exhibited in large “anomalous’ magnetic
moments, indicating strong meson currents.

8. THE ANGULAR MOMENTUM AND PARITY OF THE PHOTON

Till now we have been considering the emission of photons with given
momentum and helicity. However, this is not convenient for calculations
involving emission of radiation between states with definite values of angular
momentum and parity. In fact parity “violations” in nuclear states are so
weak that they can be neglected. As the interaction Hamiltonian (6.6) is a
scalar product of two vectors, it commutes with the operators which generate
the infinitesimal rotations of coordinates and with the parity operation. In
this way the angular momentum and parity are conserved in electromagnetic
transitions between nuclear states and it would be convenient to attribute, as a
particle, to the emitted photon definite values of angular momentum and
parity.

We shall now make some comments on the physical significance of the
description of the angular momentum of the photon as composed of an
orbital part and intrinsic spin of unity.

The operator of annihilation of circularly polarized photons, ay,,
appears in H,,, together with a plane wave &,¢™7, which satisfies the wave
equation (V2 4+ k?)A(r) = 0. We could take the photon wave function as
corresponding, in coordinate space, to this function. If we adopt that function
as describing the state of a single photon with definite momentum and
helicity, we may write

kA = fpe™T 8.1

The lack of meaning of a localized photon is implicit in this expression
because it contains only the momentum in the direction normal to the plane
wave, so it is not possible to localize the photon in that plane. The photon,
represented by the vector state (8.1), may be said to have an angular momen-
tum that in principle could be decomposed into an orbital angular momentum
related to the change in spatial coordinates and an intrinsic spin part related
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to rotations of the vector’s direction in every point. So, even if we can mathe-
matically separate these two operations, only the total angular moment of
the photon has a physical meaning, because only the rotations associated to it
correspond to physically significant results.

We shall see next that photon states with definite parity are linear
combinations of states with A = +1 and A = —1 with equal intensities.

We can project out of the plane wave [kA>, supposedly referred to the
moving system, angular momentum states |JMX) referred to the fixed frame

(éx b é!/’ éz)

M = (2" pas 1)”2 f Din(kA> di (8.2)

By fdf( we indicate integration over the unit sphere. We shall use for the D
matrices the convention of Bohr and Mottelson (1969). The rotation of the
k = £, axis of the moving system to the &, = £, axis of the fixed frame is
defined by the Euler angles ¢ = pand B = 6, where « is the angle that makes
the y axis perpendicular to the plane of k and &,. As y is not constrained we
may choose y = 0. We may write for (8.2)

2J +1
4a

lIMAS = ( )”2 j Din(p, 0, 0)[kAS sin 8 d8 dep 8.3)

with the normalization factor coming from

. . . 4z
| Dlin, 6, 00Dl 6,0)5in 60 dp = 577 8118100

To the state |JMA) corresponds obviously the magnitude of momentum &
because the wave vector k corresponds to (k, ¢, 6) and the integration is over
@ and 6. So we could insert it in the ket and write |k, JMA) instead of | JMA).

Let us now consider the behavior of |k, JMX) under parity operation.
To begin with

Dia(m + @, m — 6,0) = (=) Dis_x(9, 6,0) 84

Then from (8.1) we shall have to examine what happens to &, under parity
operation. To find the result we consider &, as written in its spherical com-
ponents relative to the fixed frame

ék)\ = z évD%;\((Pp 0: 0)
Here £, is given by

étl = F 2—1/2(éx + ié!/)a EO = éz
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From (8.4) we may write

é -kA T T ék—)\
and finally
P{r|kd) = Péoe*™ = — £ e = —(rfk — A (8.5)
So, the result of the parity operation on (8.3) is
Pk, JMXy = (=Y|k,JM — X> (8.6)

Corresponding to the values kJM we may construct states with well
defined parity. These states can be formed by linear combinations of states
with A = +1

|kt ;MY = 2"Y(lk; IM1) + [k; JM — 1)) (8.7
From (8.6) the parity of these states is given by
Plk+;IM> = +(—=Y|k+ ;M) (8.8)

This behavior is closely related to the electric and magnetic multipole
operators that we shall consider in the next section. The angular momentum J
and parity (—) of the photon |k+ ; JM) corresponds to an electric 2’-pole
transition and the angular momentum J and parity (—)'** of the photon
|k—; JM) to a magnetic 2’-pole transition.

The photon states |k + ; JM ) are created by operators that we can define
as

a'sy = 2713k £ A1) (8.9

where identically to (8.2)

2J + 1\uz o -
ahon = (25)" [ Dao®a i (8.10)

9. THE MULTIPOLE OPERATORS

We shall now concentrate on the matrix element of the emission operator
(7.13) corresponding to a transition from an initial nuclear state |{> into a
final nuclear state’|f>

j @05 Ere=® dor ©.1)

The plane wave solutions of the wave equation represent well-defined
momentum states but on the other hand do not represent well-defined angular
momentum states. So, this description is not convenient for calculations
involving emission (or absorption) of radiation between nuclear states. This
suggests the multipole expansion of the vector field in terms of spherical
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waves corresponding each to defined values of angular momentum and parity.
The electric and magnetic multipole solutions of the wave equation (V2 + k%A
= 0 have properties appropriate for such an expansion. These electric and
magnetic components of the transverse field are

7 VxL |
ARG = T W)‘]‘mh(k" Y Y5 9.2)
with parity (=) *1, and
. L ,
Afp@) = 7 Wﬁ(kr) Y5 9.3)

with parity (—)’. The function j,(kr) is a spherical Bessel function. The factor
i’ is used to introduce convenient time-reversal properties.

Because L applied to Yy4(6, @) gives zero, we may note that (9.2) and
(9.3) rule out any transverse solution with J = 0,

We may expand the transverse circularly polarized plane wave in terms
of the set formed by the divergenceless multipole fields (9.2) and (9.3) (Brink
and Satchler, 1968).

For a coordinate system with the z axis along the wave vector k
(M = X = +1) we have

Bae' = —Qmy'" > (27 + 1)°(AR + M) 04
I
The terms of this expansion transform under rotation as an irreducible

tensor of rank J, and so, if we consider a coordinate system where k is
described by the angles 8 and ¢, rather than being along the z axis

b = —(Q2m)'2 3 (2T + DYAAG + M) Dii(p, 6, 0) = A\@)
M

9.5)
Here (g, 6, 0) is, as in Section 8, the rotation taking the z axis to the direction
k.

It might be shown (Blatt and Weisskopf, 1952) that, in the long-
wavelength approximation and taking into account the parity selection rules,
at most two values of J contribute to non-negligible effects.

The matrix element for photon emission is

[ <r@liy-at@ ©.6)

According to the ideas of Section 7 we could, similarly, have obtained
the matrix element for photon absorption

| <r@ii-aw @ 0
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These expressions suggest a distinction between the absorption multipole
operator

Heps = f J(0)- Ax(r) &% (9.8)

which transfers an angular momentum J, M to the state on which it acts and
its Hermitian conjugate (H2%¥)", which removes the angular momentum
J, M from the state on which it acts. The emission multipole operator is

% = () = | I0- A% d°r 9.9)
We will be concerned next with the calculation of the matrix elements
(de Forest and Walecka, 1966) that are involved in (9.6) with A,(r) given by

(9.5) and J(r) given by (6.5).
With L = —ifir x V we find

[ <rsei-agy aor
~ WO {f OIS IV x Likr) V0, )] &

— ke [ CFluli>-r x Vitke) V50, ) ds} 9.10)

Carrying out the calculations we have used the following results:

1. V.caxb=Db-V x a— a-V x b; and using the fact that since the
current density operator only makes sense within the boundaries of
the nucleus, the integral of the divergence term extended over all
space equals a surface integral over an infinite sphere which is zero.

2.V x (V x L) = V(V.L) — V2L with V-L = 0 and [V, L] = 0.

3. Vkr) Y16, @) = —KZjs(kr) Y#5,(6, @) because ¢,y =
Jkr) Y3, (0, @) satisfies the scalar wave equation (V2 + k%)¢,,, =

In most cases of interest the wavelength of the nuclear radiation is large
compared to the nuclear radius, kR being of the order 6 x 10-34Y3E, (MeV).

On account of this feature only distances such that kr « 1 will be

important in (9.10), and we may keep only the first term in the expansion

(kr) 1 (kr)? ©.11)

jikr) ~(77::“1)n[ 22743 * ]
Making use of
V X Ly = ih{V(l + r%) - rV2}qS,M

we may write in the long-wavelength limit (kr < 1)

J+1
V x Lidkr) Y30, @) = ihk’ Gr+ Oh V{r’ Y6, o)} (9.12)
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Using the equality
V-(ap) = ¢V-a + a-Vp (9.13)
the first term in the curly brackets on the right of (9.10) leads to

J+1

~ itk o5y | 7 Y6, V-0l

The continuity equation (7.16) enables us finally to write for (9.10)

f FII@>- AR d°r

-~ ey () {7 v o1t > v
+ R [ fumli>-Ir x Vel Va6, @) dor 9.14)
J+1

We shall next compare the relative order of magnitude of the two terms
in (9.14). From the operator equation

v-ig-fiex) 019
we may say that V reduces by 1 the powers of r, and to make estimates of
orders of magnitude we may replace V by 1/r. With p = — iV and remember-
ing the forms of j(r), (5.10), and w(r), (6.4), we may consider that r{f|j(r)|i>
and c{f|w(r)|i> are of the same order of magnitude. Comparing, in the long-
wavelength approximation, the two terms inside the curly brackets in (9.10),
accounting for (9.12), we conclude that, in a rough estimate, the second term
is a factor (kr)? smaller than the first. So, it is a good approximation to retain
only the first term

f @) ARE dor

_ g Kt T+
I Y YT W

)”2 [ rreme oxsitm w1 ¢ 016
Analogously to (9.10) we may write
[ <ra@noy- s @ = o { [ il Wik v, o1

+ Cf<f [m]i>- [V x Ljkr) Y736, 9)] d3r} O-17)
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Using the formula
SN -Ir x Vikr) Y0, @] = —r x {fli®|i>- [Vis(kr) Yiu(8, ¢)]

and the result (9.12), we obtain in the long-wavelength limit

[ <rs@in-ag aoe = 5B () [ {- Ay <oy
; <flu(r)|i>}' [Vr Y36, )] d°r 0.18)

We should distinguish the integrations on the nucleon coordinates and
on the field coordinates.
From (9.2) and (9.3) it follows that the electric multipole operator

70 = [ 30)-AR; dr
and the magnetic multipole operator

T = f I0)-AGY d°r
have opposite parity, respectively, (—)" and (=) *.

Sometimes the emission electric multipole operator is written in the
“unsafe” form

0%t = [ o' ¥it(6, 9) dPr ©9.19)
which may introduce wrong phases. Only if there is real photon emission in

the transition from |i) to |f)(E; > E;) and because then (E;, — E)/fiw = —1,
the operator

T(e) —

Vo () [ v s ke 020

as referred in (9.16), may be written as equivalent to

. fick’ J + 1\
7 (e)
g 1)!1( T ) ™ ©.2)

in the calculation of matrix elements with the final states on the left. Rose and
Brink use an absorption operator, and so they write the matrix elements for
emission processes with the initial state on the left (Rose and Brink, 1967).
As we shall examine in Section 10, with a convenient phase choice the matrix
elements are real.
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From (9.18) and with

M = f {c(—‘]1+—1) r x jr) + p,(r)}~Vrf Y00, 9) dsr (9.22)

we may write

" ek (T 4+ W2
TR = oI 1)”( 7 ) M (9.23)

Using (5.10) and (6.4) we may write for a system of nucleons described as
points charges with magnetic moment

M = 3 g | (2008 + ERL) Voo v 0| 020

From (9.19) and using (5.9) we could equally write
5 = 2, &kens’ Yi(6r, p1) (9.25)
k

10. THE BEHAVIOR OF THE MULTIPOLE OPERATORS
UNDER HERMITIAN CONJUGATION AND TIME REVERSAL:
REALITY OF THE MATRIX ELEMENTS

An irreducible tensor operator 7, of rank A, may be defined in terms of
the transformation of its components under rotation of the coordinate system.
Using for the D matrices the convention of Bohr and Mottelson (1969)

Ty, = RTWR™' = D D¥(e, B, )T (10.1)
2

Where T is the tensor in the rotated system and R(«, B, y) is the rotation
operator in terms of the Euler angles «, 8, and y.
Taking the Hermitian conjugate we obtain

R(WR™ = 3 Do B )T = 3, (=) Do B )T’
’ (10.2)

and we can still write with p arbitrary (integer with A integer)
R(=Y Ty R = > Di¥iy(e, By Y)(= (Do)t (10.3)
<

That is, the components (—y*#(T,., )" transform under rotation of the
coordinate system in the same way as the operator T,, and so having the
correct rotational properties of a tensor operator.
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Demanding p = A + 1, we shall define the components of the Hermitian
conjugate Tt of the tensor operator T by

T = (P TR-' (10.4)

If T,, = (T"), the operator is Hermitian. So, we may define a Hermitian
tensor operator as one whose components satisfy

(Tt = (=T, (10.5)

According to (9.2) and (9.3) the multipole operators 755 =
f J@)- A dPrand T{R = f J(x)- Afy" d°r satisfy the condition (10.5). On the
other hand the operator Q% as expressed in (9.19) satisfies

(Qf)" = (=)"QFy

With the definition above, as the tensor product of two tensor operators is
formally identical to the coupling of two angular momentum eigenvectors,
the product of two Hermitian operators is anti-Hermitian. In fact from

s?\u = Z <)‘11u’1A2.u’2!AV’>TA1u1T7\2M2
(312
we obtain

T = (=1,

All antiunitary operators, like the time-reversal operator J, can be
written as the product UK of a unitary operator U, which does not act on
positional coordinates, by the complex conjugate operator K (Wigner, 1959).
To find the explicit form for J~ we use the Schrédinger equation

o o

It is easily proved that if there is a unitary transformation U such that
UH*U-! = H,time-reversal invariance holds and the time-reversal state of s
is UKy The effect of K is tied to the representation used. So the form of the
time-reversal operator depends on the nature of the Hamiltonian of the system
under consideration and on the representation in which the wave function is
considered. For example, if we consider the interaction Hamiltonian (6.6)
depending on terms of the form p-A and 6-V x A, obviously U has to con-
tain the unitary operator U, acting only on spin coordinates in such a way
that

U,e*U;l = —o (10.6)

and the unitary operator U, acting on the potential vector A in such a way
that

UAU;* = —A (10.7)
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In this example the time-reversal operator would have the form
T = U, UK (10.8)

Let us examine now the form of the operator U,. For a spin-} particle
the transformation properties (10.6) of the Pauli matrices (o,, o,, o.) define
U, apart from a phase.

We may write

U, = io, (10.9)

This choice makes U, real and so it commutes with K.

In defining phase conventions in the angular momentum representation,
it is convenient to relate the time-reversal operator to the rotation operator
R,(n) for an angle = about the y axis. We may rewrite the action of the
operator U,, for the special case of a spin-} state as a rotation by —= about
the y axis (thus reversing the z axis) of spin alone

U, = io, = 2%y = gmms, = R=1(x) (10.10)

f((l)) N U"(é) - _((1)) (10.11)

We may write

and so we have
T Xl = U, XM = (=) M X s (10.12)

with X7 the spinor wave function.

The factor (—)°*™s is sometimes replaced by (—)$~™s that could corre-
spond to the use of U, = —jo,, instead of (10.9). Of course, the overall phase
of the time-reversal operator is itself a matter of convention.

Next we shall consider the example of the transformation under time
reversal of space-spin wave functions. For a many-particle system of A4
spin-} particles we may choose a basis of single-particle states whose wave
functions, for a potential with spherical symmetry, may be written

|jmy = Rur) 2, KImismy|jm) (i Yon (6, @) X7 (10.13)

mymsg

The definition of the spherical harmonics with a different phase, say i* ¥,,.(6, ¢),
has always been assumed in this paper even when not explicitly stated.
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The phases can always be chosen such that the radial wave function is
real. From (10.12) and

T Yin 0, P)] = K[i' Yin (0, @)] = (=) ™' Vim0, ¢)]

= WMLy, (6, ¢)] (10.14)
and because the Clebsch~Gordan coefficients have the property
I — ms — mg|j — my = (=)Y+s~msmy| jm) (10.15)
our choice leads to
T|jmy = (=y*"|j —m) (10.16)

From the adopted phase convention one finds that
[TMY = 3 (Gumyjama| IM Y| jims )| jams)
myme

satisfies the transformation (10.16) if | j,m;> and | joms,) already transform in
accordance with it. So, the function |JM ) constructed by combination of
products of single-particle functions | jm) satisfies the same choice of phase.
With

T = ]_—:l_[ [io,(m)]K (10.17)

the many-particle wave function satisfies
TNIMy = (=Y*™|J — M> (10.18)

We could have looked at this result as a consequence of having chosen, for a
fixed value of J, the relative phase of the angular momentum states |JM » and
|JM">, writing (Condon and Shortley convention)

T IMY = [J(J + 1) — M(M + DI¥2|JM + 1> (10.19)

In fact, according to ;
TIJ. T 1= —-J; (10.20)

we may write

T.T|IM>

—T I |IM>

-+ D -MMFDVI|IM T 1> (10.21)

and with the transformation (10.18) the result (10.19) would be satisfied.
The phase convention in (10.18) makes the phase real for both integral

or half-integral values of J.
Since

Ry A(m)|IM> = eimaly| JMYS = (=Y +M|J — M> (10.22)
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and with the phase conventions we have assumed, the time-reversed wave
function is identical to the wave function obtained by rotation through the
angle —= about the y axis. So, by choosing the phases suitably we arrive at the
conclusion that the state |JM ) is invariant under the combined operation
R ()T

R(T|IM> = |IM> (10.23)
This choice corresponds to the so-called R, 7 convention (Alder and Steffen,
1975).

From (6.5) and using

T pT 1 = p, Ty "t = —j, T ' = —o (10.24)
one finds
TTRT 1 = (=)Yr¥uT=, (10.25)
where = = e means electric and = = m means magnetic.
In fact, when we wrote A in terms of A$g); and AR we were not concerned

with the relative choice of phases but with a convenient right expansion. The
requirement that the vector potential is odd under time reversal

TAF )T "1 = —A, —1t) (10.26)
makes, in particular, Maxwell’s equations and also the electromagnetic
interaction, Hyy, = —(1/c) f J-A d°r, invariant under time reversal.

Using the Wigner-Eckart theorem the matrix element of the tensor
operator may be written in terms of the reduced matrix element with the
Clebsch—Gordan coefficient carrying the dependence on the orientation of
coordinate frame. We obtain the result

<J2M2 J‘ JA.(IJ;&’ d®r J1M1>
t
= <J2M2 (J‘ J'Asji)l dar) J1M1>
J‘JA,(]”_)M dsl' J1M1>

- (_)J+M+1<J2M2

LM — MMy J‘
(Y +M+1 A I3
( ) (2]2 T 1)1/2 Jz J A] d°r J1 (10.27)
The reduced emission matrix element {J] J' J-AP d®|J,)>, which we
shall represent in what follows as {(J,| 75|\ J;), is understood to be evaluated
from that expression.
From

<J2M21TJ(];4)IJ1M1> = <JlM1|(TJ(I]fl) T|J2Mz>* (10-28)
it follows that
<J2”T.§n)”']l> = (_)]1_12+J+1<J1“Tlm)“']2>* (10.29)
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If the phase conventions are chosen such that the nuclear wave functions
satisfy (10.18) we may write
M| TiRl i My
= (Lo M| T T TRT ~*F | J. M)
= (=)ot Mat Iy ¥ Mg+ I M J, leTJ(ﬁ)Ml‘Il — MD* (10.30)
Applying the Wigner-Eckart theorem to the right-hand side of (10.30) and

using symmetry properties of the Clebsch-Gordan coefficients it follows that,
with the phase conventions given above, the reduced matrix elements are real:

LTI = (LT )% (10.31)
and so using (10.29)
(TP ID = (=)= I TR T (10.32)

From (9.21) and (9.23) we might write (Steffen, 1971) the relation between
the reduced matrix elements as defined above and the reduced matrix
elements relative to the operators 9%, as considered by Bohr and Mottelson
(1969)

, fick? J+ 1\1e
<J2IIT;E)IIJ1> = lj (2]:— 1)!! ( J ) <J2Hgn.(fe)“"1>
. fick? J+ 1\ve
TP = = o (L) ey
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