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Starting with the classical interaction of the electromagnetic field with 
sources and then quantizing, the interaction Hamiltonian is expanded in 
multipoles. Explicit expressions for the multipole operators are obtained. 
Transformation properties, under time reversal and Hermitian conjugation, 
of nuclear states and multipole operators are studied. 

1. INTRODUCTION 

An important part of the information on nuclear properties has been 
extracted from studies of  electromagnetic transitions. 

In this article we start with the well-understood classical interaction of  
the electromagnetic field with charges and currents. The classical equations 
are quantized and the interaction Hamiltonian expanded in terms of multi- 
poles. The explicit expressions of the electromagnetic multipole operators 
will be obtained and properties of their matrix elements studied. One-photon 
states of definite angular momentum will be described since they play an 
important role in nuclear phenomena. The formalism is derived from first 
principles, and we have tried to make the discussion reasonably self-contained. 
Special reference will be made to phase conventions, and the transformation 
properties of nuclear states and multipote operators, under time reversal and 
Hermitian conjugation, will be discussed. 

The contents of the paper are as follows: 

I. Introduction 
2. The Description of the Free Radiation Field in Hamiltonian Form 
3. The Description of the Field with Charges, in Hamiltonian Form 
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4. Quantization of the Free Radiation Field 
5. The Interaction Hamiltonian between the Radiation Field and Non- 

relativistic Charges 
6. The Nucleus as a System of Nonrelativistic Spin-�89 Particles 
7. Emission of Electromagnetic Radiation 
8. The Angular Momentum and Parity of the Photon 
9. The Multipole Operators 

10. The Behavior of the Multipole Operators under Hermitian Conjuga- 
tion and Time Reversal: Reality of the Matrix Elements 

2. THE DESCRIPTION OF THE FREE RADIATION FIELD 
IN HAMILTONIAN FORM 

A useful gauge to study radiation phenomena is the Coulomb gauge 

div A = 0 (2.1) 

The so-called radiation or transverse fields are derived from a vector potential 
satisfying this relation. Furthermore, in a charge-free region, it is possible to 
transform the scalar potential ~ to zero. The electromagnetic field can then be 
described by the vector potential A(r, t), satisfying the wave equation 

1 ~2A 
V2A c2 ~t 2 = 0 (2.2) 

The electric and magnetic fields are then given by 

1 ~A 
,~ . . . .  (2.3) 

c 8t 

= curl A (2.4) 

This is essentially a description using a continuous set of variables. 
Keeping in mind that our purpose is the quantization of the electromagnetic 
field (Section 4) a more convenient way of describing the electromagnetic 
field, in Hamiltonian form, is by confining the field in a large cube of volume 
V = L 3. Requiring periodic boundary conditions on opposite faces of the 
cube, we can expand A(r, t) in terms of a set of discrete oscillating modes with 
different characteristic frequencies. With i, j, k the unit vectors along the 
edges, the required boundary conditions 

g(r  + Li, t) = A(r + Lj, t) = A(r + L~, t) = A(r, t) 

are satisfied if the wave vector 

-- -~-(nxi + nuj + k 
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is restricted in such a way that each n may only take integer values from -oo  
to +oo. 

Expanding, at a given instant, in Fourier series in that cube 

[ 2~-hc2~1, 2 
A(r, t) = ~ ~=~1.2 \ ~  La ] [ak~(t)~k~e'k'r + a*~(t)6k~ (2.5) 

stressing that A is real. The Fourier coefficients 

ak~(t) = ako(O)e -~~ (2.6) 

with ~o~ = Iklc, are a discrete set of variables characterizing the field and 
(2rrhc2/wkL3) 1/2 a convenient normalization coefficient. 

The expansion in terms of the complete orthonormal set of plane waves 
L-al26koe~k'r is just a convenient mathematical device (depending on the 
geometry of the box and boundary conditions), and does not involve a 
restriction to the problem. The unit vectors 6ko are the polarization vectors, 
and the Coulomb gauge condition (2.1) demands that A(r, t) is a transverse 
vector. 

From (2.3) one may easily find 

o~(r, t) = c ~= ,2 \~ L3 ] c%[ako(t)Sk,e ~k'r -- a*~(t)~,k~e -*k'r] (2.7) 

( 2~rhc~] 1/2 
-----~-~l k • [akXt)e, . ,e" ' "  - a~,,,(t)~,,~,e - * ' ' ]  

(2.8) 

and from, (2.4) 

J e ( , ,  t )  = i 
k a ~ l , 2  

Using (2.7) and (2.8) we find for the energy of the field 

fo 1 ~k ~' h~%(al, oa*~ + a*~ak~) (2.9) 1 (~2 + ~/g,2)d3r = 2 ~=1,2 
H = ~ ubo 

showing that H is a conserved quantity. Although classically ak~ and a*~ 
commute, we kept the order aa* and a*a because later we shall extend the 
interpretation to noncommuting operators. 

To show clearly the analogy with a set of uncoupled oscillators, thus 
justifying the oscillator expansion of the field, it is convenient to replace the 
noncanonical variables ako and a*~ by the real linear combinations 

1,2 
Qk~(t) = \2~ok] [a*:(t) + ak~(t)] 

[ h k 1/2 

(2.10) 

(2.11) 
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We obtain from (2.9) 

Calculating 

H = � 8 9  E (Pg~ + w~2Q~'~) (2.12) 
k ~=1,2 

OH 
OQk~ = ~ = --Pk~ 

and (2.13) 

OH 
OPk~ 

we see that H corresponds to the Hamiltonian for the field and that Pk~ and 
Qk~ are canonically conjugate momenta and coordinates. 

Using the index h for each mode associated with a wave vector k and a 
polarization 

H = E Ha (2.14) 
h 

where Ha reminds us of the Hamiltonian of the oscillator in classical mech- 
anics, of frequency o~ and unit mass. 

Thus, the radiation field behaves, formally, as an infinite set of indepen- 
dent radiation oscillators. In Section 4 this description of the radiation field in 
Hamiltonian form will make simple the quantization of the field, by analogy 
with the classical problem, replacing the dynamical variables P and Q by 
operators and imposing on them the usual commutation rules. 

3. THE DESCRIPTION OF THE FIELD WITH CHARGES, 
IN HAMILTONIAN FORM 

The nonrelativistic Hamiltonian for a system of particles of charge ek, 
described by the canonical variables qk and Pk, in a field having the potentials 
~(r~, t) and A(r~, t) at the position of the kth particle, has the form 

H= ~ ( 2 ~  [p~ - ~A(r~,t)]2 + ee~(r~,t)} (3.1) 

It should be noted that in ~ and A contributions of two sources are 
included. One is made up of all the charges of our system (which we shall 
call system A). The other consists of external sources (which we shall call 
system B), whose motion we shall assume to be known. We shall suppose the 
whole system (A + B) to be closed. What we loosely call HA, and is in fact 
the Hamiltonian for system A in the presence of system B, may be found 
from the Hamiltonian for the two coupled systems if we take into account 
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that the motion of system B corresponds to known functions of time (Landau 
and Lifshitz, 1960). So, in some aspects of the use of the Hamiltonian (3.1) we 
may "eliminate" the contribution brought in by the external field. This does 
not mean that the motion of system B is supposed to be independent of the 
motion of system A, but only that the motion of system B is assumed to be 
given by known functions of time. As we are, for the moment, interested in 
applications involving Hamilton's equations, we may, temporarily, dispense 
with the contribution of the external potential (r A0 to the Hamiltonian 
(3.1). In this way we shall obtain first results concerning only the field pro- 
duced by the particles of our system and later, in the final result, we can 
reintroduce the external potential. 

The potentials r and A can be made to satisfy the Lorentz gauge (which 
is in some way a kind of canonical transformation in the sense that it leaves 
Maxwell's equations invariant) 

1 ~ 
div A + c - ~  = 0 (3.2) 

Using this gauge we obtain the following uncoupled equations equivalent to 
Maxwell's equations: 

1 ~2q~ - 4~rp (3.3) 
Var c a ~t a = 

1 ~aA 4,r 
VaA ca Ot a --- ---~-j (3.4) 

Next we shall write these equations in the usual canonical form of 
classical dynamics, since we are aiming at the transition to quantum mech- 
anics. It is known that a vector field A can be split in longitudinal and 
transverse parts 

A = A T + A z (3.5) 
such that 

div A r = 0 (3.6) 

curl A L = 0 (3.7) 

Assuming the field confined in a large cube we may develop into Fourier 
series (detailed discussion in Heitler, 1954) 

A r = ~ O~(t)A~(r) (3.8) 
A 

A z = ~ O,(t)Aa(r) (3.9) 

r = ~ Qoo(t)r (3.10) 
Cr 
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with Aa, A~, and r representing complete orthogonal sets (respectively, 
transverse, longitudinal, and scalar functions) satisfying the wave equation 
and periodic boundary conditions. 

Expressing the continuous charge densities in terms of "point" charges 
ek at r~ 

p(r) = - 
h: 

we may write 

and 

j(r) = ~ ekv~8(r - rk) 
k 

fc j.A~(r) d3r = ~ ekv~.Aa(ru) (3.11) 
ube /~ 

fo pr d3r = ek o(r ) (3.12) 
ube k 

and together with the orthogonality conditions for the A~, As, and r we may 
write for (3.3) and (3.4) 

Q~ + ~ = e e~v~.Aa(r~) (3.13) 

~)~ + ~ = c ekv~.Ao(r~) (3.14) 

O0~r + o~aZQ0~ = ~ ezr (3.15) 
k 

We should bring to attention, at this stage, that in Section 2 we saw that 
the radiation field could be described by canonical variables Qk~ and Pk, and 
as a consequence of (2.13) 

Ok, '1- c%2Qka = 0 (3.16) 

Therefore the equations of motion are now more complicated, as expected, 
owing to the presence of charged particles. 

Our problem now is to find a Hamiltonian function that gives a complete 
description of the system. That is, from it we should obtain the correct 
equations of motion, for the particles and for the field, using Hamilton's 
equations. A plausible form for this Hamiltonian, suggested by comparison 
of the left-hand sides of equations (3.13), (3.14), and (3.15) with the results of 
Section 2, would be a sum of terms of the form �89 + ~2Q2) of transverse, 
longitudinal, and scalar origin. The right-hand sides would suggest a con- 
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tribution from the Hamiltonian (3.1). We take as the nonrelativistic 
Hamiltonian 

_ e ~  A(r~, t)]2 + ek~(rk, t)} 

+ � 8 9  (pa2 + coa2Qh2) + � 8 9  (p2 + co2QZ) 
A a 

- � 8 9  (Pg, + w,2Q02o) (3.17) 
G 

As mentioned above, the justification for this Hamiltonian is that it works. 
Unlike in the Lorentz gauge where A and q~ satisfy (3.4) and (3.3) it is 

found that in the Coulomb gauge (2.1) the vector potential satisfies 

V2Ar 1 O2A r 4zr "r 
c 2 ~t ~ = c ] (3.18) 

and the scalar potential r satisfies, at each instant, Poisson's equation 

V2r t) = -4zrp(r, t) (3.t9) 

The vector potential is purely transverse since from div A L = 0 and curl A L 
= 0 we may write A L = 0. The vector jr is the transverse component of the 
current density. 

The Coulomb gauge has the disadvantage compared with the Lorentz 
gauge of being noncovariant, but it is more convenient to study the radiation 
field. 

The solution for the equation (3.19) is 

r t) = f 
p(r', t) 

' ( 3 . 2 0 )  

So, in this gauge the longitudinal part of A has been entirely eliminated from 
the equations of motion and the scalar potential reduces to the instantaneous 
Coulomb interaction of the charges. 

In the Coulomb gauge the Hamiltonian (3.17) can be written 

H - -  ~ - ~  pk---~A(r~, t )  + ~ ( P ~  + oJ~2Q~2) + Voom 

with 
A T = ~ QaAa 

A 

and using the Dirac delta function 

1 I Vr = ~ p(r, t)4,(r, t) dOr = 21 ,,~ Ir~eie~- r~[ 

(3.21) 

(3.22) 

(3.23) 
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where it is understood that i = k terms, representing the infinite self-energy, 
are omitted. The insufficient hypothesis we made about the charged particles 
makes the present calculations unsuitable for the discussion of self-energy 
problems. 

Now we might endeavor to give an interpretation of the Hamiltonian 
(3.21) in terms of energy. The first term corresponds to the energy of the 
particles including the interaction energy between the charges and the 
radiation. The second term corresponds to the energy contained in the 
radiation field in the absence of sources. The third term is the static Coulomb 
interaction energy between the charges. 

To include an external potential (~e, A e) we insert ~e eke :  in (3.21) and 
consider in (3.22) 

A = ~ Q~A~ + A e 
A 

4. QUANTIZATION OF THE FREE RADIATION FIELD 

Once we have formally reduced the radiation field to an assembly of one- 
dimensional harmonic oscillators, the quantization is straightforward. 

In the Heisenberg picture, the transition to quantum mechanics for a 
system having a classical analog can be achieved replacing the canonical 
variables Qk, and Pk, by operators, changing in time, and satisfying the 
commutation relations 

[Pk,, Qk,,,] = - ih8~ ,8 , , ,  
(4.1) 

[Ok,, Qk','] = [Pk,, Pk','] = 0 

This procedure is based on the correspondence principle. 
However, it is found that two non-Hermitian operators, corresponding 

to ak, and a*, (Section 2), and introduced by operator relations 

and 

/ 1 \112 
ak,, = ~ 2 - ~ )  (t%Qk" + iPk,,) (4.2) 

[ I \i/2 

are more convenient. Their commutation rules follow from (4. I) 

[ak,, ah,o,] = 3~,3~,,, (4.4) 
[ak,, aw,,] = [a'k,, a'k,,,] = 0 
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From (2.9) the Hamiltonian operator for the radiation field, without the 
zero-point energy, reduces to 

H =  E ~ hoJ~a~oak~ (4.5) 
k a = l , 2  

For the purposes with which we are concerned, the infinite zero-point energy 
of the radiation field, ~k, hco~/2, corresponds to a constant term, which can- 
cels out, being therefore unobservable. 

From the Heisenberg equations of motion for a~,,(t) 

dak~ 1 
dt - ih [ak~(t), HI = -ioJ~ak~(t) 

we obtain 

and identically 
ak~( t ) = ak,(O)e -*~ (4.6) 

(4.7) 

and 

Inz, n2, n 3 ,  . �9 .) = ~ (na!)i/2(aa*)"-------L~ !0, O, 0, .. . )  (4.10) 

This discussion enables us to introduce a photon picture of the electro- 
magnetic field. The state vector for the radiation field, In1, n2 . . . . .  n~,... ), 
does not depend on time, since we found the Heisenberg picture to be a 
convenient representation. So, the time dependence is thrown into the field 
operators. 

The eigenvalue problem for the Hamiltonian (4.5) is closely related to the 
eigenvalue problem for Nk~ 

E= ~ E nkahw~ (4.11) 
k a = l j 2  

a * ~ ( t )  = a ~ ( o ) e ' ~ '  

The operators ak~(0) and a[o(0) correspond to the SchrSdinger picture. 
The Hermitian operator 

Nk~ = a~ak~ (4.8) 

is the number operator with eigenvalues nk~ = 0, 1, 2 . . . .  corresponding to 
the number of vibrational quanta, in the state ka, present in the cube. The 
eigenvectors Inks) of the observable Nk~ are the complete orthonormal basis 
of the representation {Nk~}. 

Apart from a trivial phase 

a~,, , l  . . . .  nk,,~, . . . .  ) ---- (nk,~, + 1 ) ~ / 2 1 . . . ,  nk,~, + 1 , . . . >  
(4.9) 

ak,~,l . nk,~,, . . ) = " l l~  l - -  1, ) �9 ~ �9 ~ k t a t  I �9 . . ,  n k i a f  �9 . . 
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Changing the complex coefficients (numbers) in (2.5) into operators 
a~, and ak~, which satisfy the commutation relations (4.4), we go from the 
classic to the quantic, throwing the function A(r, t) into an operator, depen- 
dent on the parameters r and t, which acts on vectors of the N representation. 
This vector field operator is in the Heisenberg picture 

[ 2~rhc2~ 1,2 
A(r, t) = ~ ~. ~ k L 3 ]  [aka(t)~kae ik'r + acka(t)~k~e -ik'r] (4.12) 

k o ' = 1 , 2  

Attending to (2.7), (2.8) and (2.9) it is straightforward to see that the normal- 
ization factor has been chosen such that A corresponds to the energy ho~ of 
one photon in the volume L 8 of the field. 

The vector potential operator in the Schr5dinger picture results from 
(4.12) at, say, t = 0. 

It is of interest to point out that the number operator, Nk~, does not 
commute with the operators A(r, t), ~(r, t) and J~f(r, t). 

Using for the momentum operator of the radiation field an operator 
expression identical to the classical 

1 fo ~ • o~d3r  (4.13) P = ~ ube 

and symmetrizing to ensure the Hermitian form, since ~ and ~ f  do not 
commute, we find 

P =  ~ ~. hka~0"ak~ (4.14) 
k 0"=1 ,2  

We have dropped a term Y.k~ hk/2 since the sum is carried out symmetrically 
on k. Therefore, the states of (4.10) are also eigenvectors of the radiation 
momentum operator. 

Associated with a vector field there is an angular momentum operator 
J = L + S which is the generator of its rotations. It might be shown (de 
Shalit and Talmi, 1953) that the expectation value of J~ for the electromagnetic 
field corresponds to the z component of the radiation angular momentum as 
classically defined by 

If J = ~ - ~  r x (~ x 9r dar (4.15) 

It can be shown (Gottfried, 1966) that the radiation angular momentum 
(4.15), as given in classical theory, can be written as 

J = L +  S (4.16) 

where 

L =  . ~  8~r • VA~d3r 
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and 

,f S = ~ee R x A dar 

Writing these expressions in Hermitian form and passing to quantum mech- 
anics by changing to the corresponding operators, we obtain operators L and 
S that might be interpreted as representing, respectively, the orbital angular 
momentum and the spin of the radiation field. For S we find (Gottfried, 1966) 

S = - ih ~ f~(a~lak2 - a~=ak,) (4.17) 
k 

However, this operator does not commute with H. This difficulty may be 
overcome by passing from the linear polarization representation to the circular 
polarization representation 

#k +1 = - 2-1/=(#kl + iek2) 

& - i  = 2-1'2(&1 - ie,,~) 

It is then possible to introduce new operators at + 1 and ak-1 defined by 

ekaaka: E Skhak~' (4.18) 
a=l,2 A= &1 

The new annihilation and creation operators satisfy commutation rules 
similar to (4.4) and we may write 

S =  ~ Ahf~a~ak~ (4.19) 

Nk~, = atk~ak~ (4.20) 

H = ~ ~ hoJka~xaka (4.21) 
k A=:hl 

P = ~ ~ hka~xaka (4.22) 

These operators commute with each other and so it is possible to specify 
simultaneously their eigenvalues. Corresponding to the circular polarization 
unit vectors SkX the operators aka and a~a correspond to the annihilation and 
creation of right-handed (A = +I) or left-handed (A =-I) circularly 
polarized photons. 

Let us consider now a one-photon state defined by 

[kA) = a~a[0), ;~ = _+ 1 (4.23) 

It can be shown that for this state 

( L . ~ ) l k a )  = 0 
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This is not a surprising result for an orbital angular momentum acting on a 
state described by a plane wave. 

From (4.19) it follows that 

(S.~)lkA) -- AhlkA), A = + 1 

It is of interest to point out, at this stage, that as a result of the quantiza- 
tion procedure we were led to the photon picture of the radiation field. The 
occupation states represent a number of particles, i.e., states associated with 
some event and corresponding to a set of quantum numbers. We may inter- 
pret the result (4.19) as describing the spin of the radiation field in terms of  a 
total number of photons each of them described in terms of helicity + I and 
- - 1 .  

For the component of the total angular momentum of the radiation field 
along the direction of propagation, and for a one-photon state we have 

d~[kA) = AhlkA), A = _+ 1 (4.24) 

We say that the photon helicity, defined as the projection of the total angular 
momentum of the photon along the direction of propagation, can only have 
the values + 1 and - 1 .  The value zero is not possible. This is a property 
characteristic of spin-1 particles with zero rest mass, and it leads to an asso- 
ciation between the quantum of  the radiation field and a particle of mass 0 
and spin 1. 

Using the operators introduced in (4.18) we can easily extend the trans- 
verse vector field operator A(r, t) (4.12) 

/2~he2'll12r a ~. ei~k.r-%t) ,,* ~'* ,-t(k.r-r A(r, t) = ~ ~ ~ - - - ~ ]  t k~ k~ + ~k~k~ '~ 
k A = :t: 1 

(4.25) 

The set [{nka}) is very convenient to use in cases involving perturbation 
theory calculation with variation of the number of  photons by 1. It does not 
follow that this is the only representation possible or even that it always offers 
the best insight in radiation problems. The coherent states (Glauber, 1963; 
Carruthers and Nieto, 1965) are very useful in certain radiation problems 
because they are the quantum states that more closely approximate the 
classical limit. So far we have used the number representation, but here the 
expectation values of g, arg, and A vanish 

< n l ,  n2, �9 � 9  na . . . .  I~lnl, n2 . . . . .  n ~ , . . . >  - -  0 

since these operators have no diagonal matrix elements in that representation. 
But the classical description of  a system should be valid as obtained from the 
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quantum description when the quantum numbers are huge compared to 
unity. So the correspondence principle cannot be applied here because no 
matter how large the n's are we do not obtain results valid in the classical 
limit. It is, nevertheless, possible to construct states that are the quantum 
analogs of the classical, by superposition, in an appropriate way, of energy 
eigenstates of the harmonic oscillator. This coherent state It,) may be defined 
as an eigenstate of the operator 

For the operator a* no such relation exists because it would imply (nice) --- 0 
for any n. 

The coherent state, defined for all complex numbers c,, forms a complete 
nonorthogonal set (a is a non-Hermitian operator) 

~. ~- e_ 1~121Ze~,t0 } Icff = e-1~12/2 ,~--o (n!) 1/2 In) = 

where [0) is the ground state of the oscillator and e-t,~/2 a normalization 
factor. 

The probability that the energy of the coherent state is nhoJ follows a 
Poisson distribution 

[ ( n l ~ ) [ 2 =  n! ' 

The coherent state represents a minimum uncertainty wave packet state 
because it minimizes the product ~qAp. 

The expectation values of a and a* in this state are 

< ' ~ l a l " )  = " 

( - [ a * l - )  = ~*  

For a multimode state 

A 

with 

If  each mode is in a coherent state the mean value of, say, o~(r, t) is 

( ,x . . . . .  c,x . . . .  ]oe(r, t)]ul . . . . .  ~,~,. . .)  

= i ~  a l~[2*rhc2]~/Z'r~o~xL 3) ~at~="k ' r - '~176 c~a *e-'k',-~%~ 

and identically for .Yg(r, t) and A(r, t), looking like the classical field (2.7). 
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5. THE INTERACTION HAMILTONIAN BETWEEN THE 
RADIATION FIELD AND NONRELATIVISTIC CHARGES 

In view of the result (3.21) the nonrelativistic Hamiltonian for a system 
of particles (without spin) plus radiation field may be written, in the Schr6d- 
inger picture, 

+ H~d + V(rl, r2 . . . . .  r k , . . . )  (5.1) 

where V is the interaction potential between the particles and Hr~a can be 
written in the form (4.21). 

Writing 

H ~  = ~ - ~ p :  + v (5.2) 

the Hamiltonian (5.1) can be written as 

H = Hp,, t  + Hr,a + Hi,~ (5.3) 

The term 

Hj~ = - ~  e~ S '  e~2 A 2 (5.4) (p~. A + A. pg) + ~ 

describing the interaction between the field and particles, is the perturbing 
energy on the unperturbed Hamiltonian 

11o = H.~t + Hraa (5.5) 

whose eigenfunction can be written in the form 

I W) = [i)p~rt[..., nk;,,...>r~d (5.6) 

The second term of Hl~t (5.4) gives rise to products of the form ak~,akw, 
ak;,a~w, a*k~,ak,a,, and a~aa~.~,, and must be considered in processes involving 
two photons. Otherwise this term is of second order in e and can be neglected 
in perturbation calculations taken to first order in e. In such a case we may 
take simply 

~ e~ 
H~t = - ~ (p~-A + A-p~) (5.7) 

In fact, since 

[p;,f(q, p)] = - ih af 
8q: (5.8) 
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with j(1, 2, 3) referring to components, we may write in the Coulomb gauge 
p.A = A.p. 

Considering a quantum mechanical system of particles with masses m~ 
and charges ee, the charge-density operator is given by a sum of 8 functions. 
For a system of protons and neutrons 

pop(r) = ~ egz(k)~(r - re) (5.9) 

where g~(k) = 1 or 0 for a proton or a neutron, re is a position operator and 
r, which is not an operator, indicates the point of space where we observe the 
charge density. 

The charge density in a state is given by the expectation value of (5.9) in 
that state. This expectation value corresponds to the sum of the probabilities 
of finding each of the charges, and for all possible configurations, at the 
position denoted by r. 

Similarly we may define a current-density operator 

jop(r) = ~ eg,(k) e ~ [peS(r - r~) + 8(r - r~)pe] (5.10) 

It is convenient to symmetrize since the expression contains the product of 
noncommuting Hermitian operators and we want to ensure that joy(r) is 
Hermitian. For the simple case of a single particle it can be shown, using 
(5.8) and the property of the 8 function f (x)8 ' (x  - a) = - f ' ( x ) 8 ( x  - a), 
that 

f ieh ~*(r~)jop(r)~0(re) d3re - - ~ [rp*(r)V~o(r) - ~0(r)Vrp*(r)] (5.11) 

We might say that this gives the idea of introducing a particle current-density 
operator (5.10) whose expectation value is the probability density current 
shown on the right side of (5.11). 

In terms of the current-density operator joy(r) we may write Hint (5.7), in 
the Schr6dinger picture, as 

~, f da r egz(k) [p~. 8(r -- re)A(r) + 8(r -- rk)A(r), p~] H~ 
2mr J 

if - c jop(r).A(r) dar (5.12) 

describing the coupling of the quantized radiation field to the current density 
of the particle system. 

In the following we will omit the subscript "op."  
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6. THE NUCLEUS AS A SYSTEM OF 
NONRELATIVISTIC SPIN-�89 PARTICLES 

Just as classically, a spinning charge distribution corresponds to a 
magnetic moment, we associated in quantum mechanics a magnetic moment 
with the spin. In the nucleus the total current operator has a contribution 
from the "convection" current and a contribution from the "spin" current 
coming from the intrinsic magnetic moment of the nucleons. A magnetic 
moment density Ix is equivalent to a current (Jackson, 1962) 

j~ = cV x Ix (6.1) 

For a single particle we define a density operator corresponding to the 
intrinsic angular momentum or spin 

s(r)  = 8(r - r~)�89 (6.2) 

where a(ax, %, as) is the operator corresponding to the Pauli matrices acting 
on the spin part of a two-component wave function called a spinor. The 
expectation value of s(r) is the spin density at the position r. 

The magnetic moment of spin density operator for a point charge is 
taken as 

e h 
Ix(r) = ~ gs(k)8(r - r~) ~ a (6.3) 

where g~ is the spin g factor, with gs = 5.585 for a proton and g~ = -3.826 
for a neutron. 

For a many-particle system 

e h o(k) (6.4) Ix(r) = ~ 2me g~(k)8(r- rk) 

where a(k) is the operator acting on the spin coordinates of the kth particle. 
Calculating the expectation value we integrate for, every k, over the coor- 
dinates of the other particles. 

The total current density operator is 

J(r) = j(r) + cV • Ix(r) (6.5) 

The interaction between the total nuclear current and the quantized 
radiation field, in the Schr6dinger picture, is 

/-/~t = - c  S(r).A(r) d3r (6.6) 

Once A(r), in the Schr6dinger picture, results from (4.25) at, say, t = 0, this 
operator only has matrix elements for transitions in which the number of 
photons change by 1. 
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From the previous considerations as V x ~- A = i~. ~ ,  the contribution 
to the interaction Hamiltonian of the current resulting from the intrinsic 
magnetization can be interpreted as the energy of interaction of the magnetic 
moment with the magnetic field. 

7. EMISSION OF ELECTROMAGNETIC RADIATION 

In accordance with (5.3) and (5.5) we may write, in the SchrSdinger 
picture, 

H s = H0 s + H~t (7.1) 

Ho s contains the description of the two systems, radiating system and radia- 
tion field, as noninteracting, and H(nt describes their mutual interaction. It is 
this interaction, of the nucleus with the external field, which causes transitions 
to take place between stationary states of the system. With HN the Hamiltonian 
of the radiating system (nucleus), we may write for the time independent 
Hamiltonian Ho s 

Ho s = HN + Hr~a (7.2) 

with eigenfunctions 

14~$) = Ii)NI'" "nka' '  ")r~a (7.3) 

A convenient way to deal with the problem is to transform the Schr6dinger 
state 

lOs(t)) = ~ c.(t)e-("n)E.~ (7.4) 
n 

solution of 

ih ~14's(t)) - HZl~bs(t)) 
Ot 

into the interaction picture. 
With the superscript I denoting interaction picture we obtain for the 

state vectors and perturbation, respectively 

I4/(t)) = e<~Zn)'o~lg, S(t)) -- ~ c.(t)lg, J )  (7.5) 

and 

U i l n t  .~  e ( t / ~ ) H o t S ~ e - ( i l h ) H o  t 

In the interaction picture we obtain 

~[r 
ih at = Hi t l f ' ( t )>  

(7.6) 

(7.7) 
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where Hint appears instead of H s, showing that the time development of 
I~b~(t)) is dictated by the interaction Hamiltonian. 

It would be interesting to note, in addition to what we have said in Sec- 
tion 3, that the interaction picture is implied in the process of "disregarding 
the external world" from our problems. 

The equations of motion for the coefficients c~(t) are obtained from (7.7) 

dCmdt = - h  c=(t)($=SlHI=tl~=s) (7.8) 

Let us now consider a nucleus that emits a photon of momentum hk and 
helicity A, making a transition from the initial nuclear state l i)  to the final 
state I f )  belonging to a discrete spectrum. Supposing that the system is 
initially in an eigenstate of H0, (7.2), we may refer to this eigenstate as 
[ i ; ' ' 'nka ' ' '  ) representing the product of the nuclear state l i)  by the radia- 
tion state [-. �9 nka. �9 �9 ). The only final states for which there is a nonvanishing 
matrix element of H,~t are states [f;-- 'nka + 1 . . .  ). 

We may write for the 

<f;...nk~ + 1. . .Inlndi; . .  

= \~%La/ ( f ; ' "  

matrix element involved in (7.8) 

�9 nka' '  . )  

+ 1. . .  I f d3r[e(Un)~'NtJ(r) e-(~/n)~Nt] 
J 

with 

�9 ~ * ~ e - ' ( k " - ~  . .  . n k a . . . >  

= e-(~/n)(E,-~1-n%)t(f;...nka + 1 . . .  [~r (7.9) 

[ 2~rh '~ 1,2 ~" dZrJ(r)" ~*ae-'k'ra*k~ (7.10) 

Only the term in a[~ is present in the matrix element because the correspond- 
ing term in au~ cannot contribute. With the final state written on the left, as in 
(7.9), the operator adequate to the emission matrix element is the operator 
~ .  

Actually, the emission involves a continuum of photon states. Until now 
we have been assuming that the nucleus is heavy, localized, and the levels 
infinitely sharp, with no linewidth, and so perfectly monochromatic radiation. 
In fact this implies neglecting the reaction of the radiation field on the radiat- 
ing system, which is not realistic. Perhaps it would be useful to go back to the 
approach used in Section 2 to treat the continuous problem. To substitute it 
by a discrete problem we confined the field in a cube of volume L a. After 
taking advantage of this substitution we keep always in mind that to go back 
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to the initial problem we just need to make L increase indefinitely. As we have 
seen in Section 2, the values for k, allowed by the periodic boundary con- 
ditions, are k = (2zUL)n. When L increases, the allowable k's approximate a 
continuous distribution in k space and the photon states approximate a 
continuous energy spectrum. As we are interested, physically, in studying the 
emission of a photon within a solid angle dO, i.e., over a small range of k, we 
may write for the number of photon states, of one helicity ~, with energy 
between E = hoJ and E + dE, and in a solid angle df~ about k 

L a to~ 
pan(E) dE = (2rrc) 3 h df~ dE (7.11) 

where pan(E) is called the density of states. 
On the other hand, the solution of (7.8) depends critically on the initial 

conditions. The standard treatment of first-order time-dependent perturba- 
tion theory, leading to Fermi's golden rule, is restricted to times short 
enough to make the probability of transition out of the initial state very small. 
That  is, c~(t) may be taken as equal to c~(0) = 1 minus small first-order cor- 
rections. Obviously these are not the conditions we expect to be satisfied when 
studying the decay of a state. So, we will resort to the Weisskopf-Wigner 
method assuming an exponential decay law, [c~(t)[ 2 = e -r~, for the initial 
state. The quantity ~- = F-1 is the mean lifetime of the excited state. Neglect- 
ing the level shift we obtain the result 

r = ~ 2-~l<f;...nk~ < + 1...i.~e]~li;...nk~<...bl~pd,(E, - E,) 

(7.12) 

where it is understood we sum over the k in dO, and pa~(Ei - El) represents 
the density of states of emitted photons with energy E = hco = E~ - E r. 
Actually, this expression corresponds to the transition probability per second 
obtained in first-order time-dependent perturbation theory. 

We may write for the matrix element involved in (7.12) 

< f ; ' " n k a  + 1 . . .  I~LIi;'"nka'" "> 

[ 2~rh \ 1/2 1) 1/2 f ~. e_~k. r = - t ~ k L  a) (nka + dar(flJ(r)]i> �9 (7.13) 

The term in (7.13) proportional to nkx corresponds to the stimulated emission. 
The term that is still present even when nka = 0 corresponds to the spon- 
taneous emission. This means that the matrix element (7.13) is not necessarily 
zero when there are no photons k2, already present in the initial state, and so 
this explains the emission of a photon by an isolated nucleus when there is no 
applied radiation. 
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The expression 

e(~/~mN~j(r)e-(~mm~.t = jn(r  ' t) (7.14) 

appearing in (7.9), is the current density operator in the Heisenberg picture 
for an isolated nucleus. We can write a similar expression for pH(r, t). In the 
following we shall omit the superscripts. 

When we related the field with sources, in Section 3, we were assuming a 
classical localized distribution of charge p(r, t) and current J(r, t) whose time 
dependence could be represented by a superposition of Fourier components. 
For our purposes it is sufficient to consider the part with frequency w, 
p(r, t) = p(r)e -~t  and J(r, t) = J(r)e -~c~ where it is assumed to take the 
real parts. We may say that passing to quantum mechanics the classical 
charge and current densities are replaced by the matrix elements of the 
corresponding operators, p(r, t) and J(r, t), between the initial and final 
states of the radiating system. So they go into a transition current density 

<f[ J(r, t )[i> = e- ('/n)<~, - e,)t<flJ(r)[i> (7.15) 

and identically for the charge density. 
The above treatment, although good enough for some purposes, does 

not take into account the finite size of nucleons as well as meson effects such 
as exchange currents (Bohr and Mottelson, 1969). 

The finite size of nucleons can be taken into account by a suitable 
substitution of the delta function, which appears in the charge-density and 
current-density operators, by convenient magnetic and electric form factors. 

The presence of nuclear forces, supposed to be originated in the meson 
exchange between nucleons, generates exchange currents producing electro- 
magnetic effects. Till now we only assumed, explicitly, the Coulomb forces 
between the charges. But, of course, for the nucleus the Hamiltonian is 
assumed to contain the exchange effects, with the nuclear state being eigen- 
state of the meson-nucleon problem. 

Even with H containing exchange potentials, if j includes the exchange 
current j~xoh defined in such a way that 

V.j~=oh = - (i/h)[Ve~,eh, p] 

j is still assumed to satisfy the charge conservation continuity equation (the 
spin current does not contribute since it has zero divergence) 

V.j = ~P = - / [ H ,  p] (7.16) 
Ot h 

with H the Hamiltonian of the nucleus. 
The difficulties in handling this problem result from assumptions we 

need to describe the meson current distribution. 
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Siegert's theorem (Sachs, 1953) can be invoked for the electric multipole 
moments to replace the current operator by the charge density operator. This 
theorem depends on the fact that, in the long-wavelength limit, A can be 
written approximately as the gradient of a scalar. For a magnetic multipole 
this cannot be done. So, the exchange interactions are expected, in good 
approximation, to have no important effects in the electric multipole mo- 
ments, once the charge distribution can be assumed not to be much affected 
by the exchange currents. On the other hand, magnetic multipoles depend on 
the current density, Siegert's theorem does not apply, and the exchange 
effects can be important and are exhibited in large "anomalous" magnetic 
moments, indicating strong meson currents. 

8. THE ANGULAR MOMENTUM AND PARITY OF THE PHOTON 

Till now we have been considering the emission of photons with given 
momentum and helicity. However, this is not convenient for calculations 
involving emission of radiation between states with definite values of angular 
momentum and parity. In fact parity "violations" in nuclear states are so 
weak that they can be neglected. As the interaction Hamiltonian (6.6) is a 
scalar product of two vectors, it commutes with the operators which generate 
the infinitesimal rotations of coordinates and with the parity operation. In 
this way the angular momentum and parity are conserved in electromagnetic 
transitions between nuclear states and it would be convenient to attribute, as a 
particle, to the emitted photon definite values of angular momentum and 
parity. 

We shall now make some comments on the physical significance of the 
description of the angular momentum of the photon as composed of an 
orbital part and intrinsic spin of unity. 

The operator of annihilation of circularly polarized photons, ak~, 
appears in Hint together with a plane wave ~k~e~k 'r, which satisfies the wave 
equation (V 2 + k2)A(r) = 0. We could take the photon wave function as 
corresponding, in coordinate space, to this function. If we adopt that function 
as describing the state of a single photon with definite momentum and 
helicity, we may write 

(r[kA~ = ~:k~e ~k'r (8.1) 

The lack of meaning of a localized photon is implicit in this expression 
because it contains only the momentum in the direction normal to the plane 
wave, so it is not possible to localize the photon in that plane. The photon, 
represented by the vector state (8.1), may be said to have an angular momen- 
tum that in principle could be decomposed into an orbital angular momentum 
related to the change in spatial coordinates and an intrinsic spin part related 
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to rotations of the vector's direction in every point. So, even if we can mathe- 
matically separate these two operations, only the total angular moment of 
the photon has a physical meaning, because only the rotations associated to it 
correspond to physically significant results. 

We shall see next that photon states with definite parity are linear 
combinations of states with ,~ = + 1 and ~ = - 1 with equal intensities. 

We can project out of the plane wave Ik~), supposedly referred to the 
moving system, angular momentum states ]JMa) referred to the fixed frame 

^ ^ 

(~x, %, e~) 

IJMA> = ~ DJ~a(~:)lka> d~ (8.2) 

By f d~ we indicate integration over the unit sphere. We shall use for the D 
matrices the convention of Bohr and Mottelson (1969). The rotation of the 

= ~k0 axis of the moving system to the ~ = ~0 axis of the fixed frame is 
defined by the Euler angles a --- ~0 and/3 = 0, where ~ is the angle that makes 
the y axis perpendicular to the plane of k and r As y is not constrained we 
may choose y = 0. We may write for (8.2) 

IjMA> = [2J + 111' = ( \--"Tg--~ ] J DSa(% 0, 0)]ka) sin 0 dO d~ (8.3) 

with the normalization factor coming from 

f i* 4rr DMa(% 0, 0)D~,a(% 0, 0) sin 0 dO d~o = 2J +----"~ 8.rS,3MM, 

To the state ]JM,~3 corresponds obviously the magnitude of momentum k 
because the wave vector k corresponds to (k, % 0) and the integration is over 
~o and 0. So we could insert it in the ket and write [k, JM,~) instead of IJM,~). 

Let us now consider the behavior of ]k, JMA) under parity operation. 
To begin with 

D~a(,r + % ~r - 0, 0) = (-)JD~_a(go, 0, 0) (8.4) 

Then from (8.1) we shall have to examine what happens to ~ka under parity 
operation. To find the result we consider ~ka as written in its spherical com- 
ponents relative to the fixed frame 

& = o, o) 
V 

Here ~v is given by 
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From (8.4) we may write 

and finally 

P<r IkA> = e~kae 'k'r = - ~k-a e'k'r = --<r[k -- A) (8.5) 

So, the result of the parity operation on (8.3) is 

Plk, JM~,> = ( - ) q k ,  JM - A) (8.6) 

Corresponding to the values kJM we may construct states with well 
defined parity. These states can be formed by linear combinations of states 
with A = + 1 

Ik+ ;JM)  = 2-1'2(lk;JMl) + Ik;SM - 1)) (8.7) 

From (8.6) the parity of these states is given by 

P Ik + ; JM)  = + ( - )S lk  + ; JM)  (8.8) 

This behavior is closely related to the electric and magnetic multipole 
operators that we shall consider in the next section. The angular momentum J 
and parity ( - ) s  of the photon [k+ ;JM)  corresponds to an electric U-pole 
transition and the angular momentum J and parity ( - )J+~ of the photon 
l k -  ; JM)  to a magnetic U-pole transition. 

The photon states Ik + ; JM)  are created by operators that we can define 
as 

a~,M = 2-~'2(4M1 + 4M-1) (8.9) 

where identically to (8.2) 

DMa(k)au~ df~ (8.10) 

9. THE MULTIPOLE OPERATORS 

We shall now concentrate on the matrix element of the emission operator 
(7.13) corresponding to a transition from an initial nuclear state li> into a 
final nuclear state ~lf) 

f<flJ(r)[i) .  ~*ae -~k'r dar (9.1) 

The plane wave solutions of the wave equation represent well-defined 
momentum states but on the other hand do not represent well-defined angular 
momentum states. So, this description is not convenient for calculations 
involving emission (or absorption) of radiation between nuclear states. This 
suggests the multipole expansion of the vector field in terms of spherical 
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waves corresponding each to defined values of angular momentum and parity. 
The electric and magnetic multipole solutions of the wave equation (V 2 + k2)A 
= 0 have properties appropriate for such an expansion. These electric and 
magnetic components of the transverse field are 

i ~ V x L  �9 (0,~o) 
A~s~(r) = k [J(J + 1)] 1/2J1(kr) Y~M (9.2) 

with parity (-) i  + 1, and 

L 
A<s~(r) = P [j( j  + 1)]l/2jn,~,j ,u (9.3) 

with parity ( - ) I .  The functionj~(kr) is a spherical Bessel function. The factor 
i ~ is used to introduce convenient time-reversal properties. 

Because L applied to Yoo(O, q~) gives zero, we may note that (9.2) and 
(9.3) rule out any transverse solution with J = 0. 

We may expand the transverse circularly polarized plane wave in terms 
of the set formed by the divergenceless multipole fields (9.2) and (9.3) (Brink 
and Satchler, 1968). 

For a coordinate system with the z axis along the wave vector k 
( M =  ~ =  + l )  wehave 

~kae ikz --~ --(2zr)  1/2 ~ (2J + 1)1/2(A~ + AA~] )) (9.4) 
1 

The terms of this expansion transform under rotation as an irreducible 
tensor of rank J, and so, if we consider a coordinate system where k is 
described by the angles 0 and % rather than being along the z axis 

AAtm)'~ D J~ r ekae 'k'r = --(27r)1/2 ~ ,  ( 2 J  + 1)I/S(A~j% + .rMJ ~a tg ,  0, 0) = Aa(r)  
IM 

(9.5) 

Here (~o, O, 0) is, as in Section 8, the rotation taking the z axis to the direction 
k. 

It might be shown (Blatt and Weisskopf, 1952) that, in the long- 
wavelength approximation and taking into account the parity selection rules, 
at most two values o f d  contribute to non-negligible effects. 

The matrix element for photon emission is 

f <flJ(r)li>.A*(r) (9.6) d3r 

According to the ideas of Section 7 we could, similarly, have obtained 
the matrix element for photon absorption 

f <flJ(r) li >. (9.7) Aa(r) d3r 
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These expressions suggest a distinction between the absorption multipole 
operator 

H~ bs = .f a(r). Aa(r) dSr (9.8) 

which transfers an angular momentum J, M to the state on which it acts and 
its Hermitian conjugate (H~]S) *, which removes the angular momentum 
J, M from the state on which it acts. The emission multipole operator is 

= (H~S) * = j" J(r). A*(r) dZr (9.9) 

We will be concerned next with the calculation of the matrix elements 
(de Forest and Walecka, 1966) that are involved in (9.6) with Aa(r) given by 
(9.5) and d(r) given by (6.5). 

With L = - i h r  x V we find 

f (f[J(r)[i) .A~" d3r 

- k[J(J + 1)] ~'2 (f[j(r)[i)-  [V x Li(kr)Y*M(O, go)] dar 

- ihk2c f ( f l t t ( r ) l i ) - [ r  • Vj1(kr) YT~(O, go)] dar)  (9.10) 

Carrying out the calculations we have used the following results: 

1. V .a  • b = b .V • a - a-V • b; and using the fact that since the 
current density operator only makes sense within the boundaries of 
the nucleus, the integral of the divergence term extended over all 
space equals a surface integral over an infinite sphere which is zero. 

2. V x (V x L ) = V ( V . L ) - X 7 2 L w i t h V . L = 0 a n d [ V  2 , L ] - - 0 .  
3. V2j~(kr) Y*~(O, go) = -k2jj(kr) Y*M(O, go) because 6m = 

jj(kr) Y*~ (0, go) satisfies the scalar wave equation (V 2 + k2)6ju = 0. 

In most cases of  interest the wavelength of the nuclear radiation is large 
compared to the nuclear radius, kR being of the order 6 • 10-3AI~aEr (MeV). 

On account of  this feature only distances such that kr << 1 will be 
important in (9.10), and we may keep only the first term in the expansion 

(kr)" [ 1 (kr) 2 ] 
js(kr) = (2J + 1)]! 1 2 2 , / +  3 + "'" (9.11) 

Making use of 

V • L ~ m  ih V l + r - r V  2 = Y M  

we may write in the long-wavelength limit (kr << 1) 

V x Ljj(kr)Y*M(O, go) ~ ihk J J + 1 (2J + 1)!! V{r' r*~(O, ~o)} (9.12) 
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Using the equality 

V. (a9) = 9V- a + a. V9 (9.13) 

the first term in the curly brackets on the right of (9.10) leads to 

J + 1 f &Y*~(O, 9)V.(f]j(r) l i  ) d3r - ihk~ (2J + 1) ! l 

The continuity equation (7.16) enables us finally to write for (9.10) 

f ( f ]  A~* d3r J(r) Ii). 

- i '  (2J + 1) l! r J Y*~(O, 9)(fl [H, p(r)]li) d3r 

+ j +ihkZc f } 12 (fll~(r)li).[r • V&Y*~(O, 9)]dSr (9.14) 

We shall next compare the relative order of  magnitude of the two terms 
in (9.14). From the operator equation 

V r ~  / 1 ( ~  ) = x L (9.15) r ~r hr 

we may say that V reduces by 1 the powers of r, and to make estimates of 
orders of magnitude we may replace V by 1/r. With p = - ihV and remember- 
ing the forms ofj(r), (5.10), and ~(r), (6.4), we may consider that r(fIj(r)li) 
and c( f  I i~(r)li) are of the same order of magnitude. Comparing, in the long- 
wavelength approximation, the two terms inside the curly brackets in (9.10), 
accounting for (9.12), we conclude that, in a rough estimate, the second term 
is a factor (kr )  2 smaller than the first. So, it is a good approximation to retain 
only the first term 

f ( f l  i A~* dSr J(r)] 

= --iJ (2J + 1)!l rJY~M(O, 9)(f l [H,  p(r)]]i) d3r (9.16) 

Analogously to (9.10) we may write 

f il ( f  ( f l J ( r ) ] i )  "'<'~,'~m d*r = [ j ( j  + 1)]1/2 ( f l j ( r ) l i ) .  [Ljj(kr) Y*M(O, 9)] d3r 

+ c [  ~l~(r)li>. IV • Lj~(kr)Y*~(O, 9)] d3r~ (9.17) 
, J  3 
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Using the formula 

( f l j ( r ) l i ) . [ r  x Vj~(kr)Y*z~(O, ~o)] = - r  x ( f l j ( r ) l i ) .  ~j~(kr)Y*~(O, ~o)] 

and the result (9.12), we obtain in the long-wavelength limit 

iS-IhcU ( ~ _ ) v 2  f ( 1 
( f l J ( r ) [ i )  'A(mr~JM d ar = (2J + 1)!! ~ c ( J  + 1) r x (f[j(r)[i) 

+ ( f l  ~(r) l i)}.  [Vr J Y*~(O, w)] d 3r (9.1 8) 

We should distinguish the integrations on the nucleon coordinates and 
on the field coordinates. 

From (9.2) and (9.3) it follows that the electric multipole operator 

Ts (e) f A(J~ " dar J(r)- M = 

and the magnetic multipole operator 

T~(~ ) = f J(r). A(~" dSr 

have opposite parity, respectively, ( - ) z  and ( - ) z  + 1. 
Sometimes the emission electric multipole operator is written in the 

"unsafe" form 

Q~) f P(r)rS r*u(O, d3r q~) (9.19) J M  = 

which may introduce wrong phases. Only if there is real photon emission in 
the transition from li) to [f)(E~ > Er) and because then (EI - EO/hco = - 1, 
the operator 

T(e~ - i  ~ k'-~ ( ~ _ ) ~ / 2  f M = (2J + 1)!t rsY*M(O, ~o)[n, p(r)] dar (9.20) 

as referred in (9.16), may be written as equivalent to 

hck s ~__~)i,2 
iJ (2J + 1)!! Q~s~ (9.21) 

in the calculation of  matrix elements with the final states on the left. Rose and 
Brink use an absorption operator, and so they write the matrix elements for 
emission processes with the initial state on the left (Rose and Brink, 1967). 
As we shall examine in Section 10, with a convenient phase choice the matrix 
elements are real. 
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From (9.18) and with 

= c(J + 1) r x j(r) + Nr) �9 Vr ~ Y*~(O, ~) dar (9.22) 

we may write 

i ' - lhcM (J  + 1)1'2M}~ (9.23) 
T}~' = (2J + 1)!t S 

Using (5.10) and (6.4) we may write for a system of nucleons described as 
points charges with magnetic moment 

Ms(m ~ e [ (  2g~(k) ).Vk(rkSY.M(Ok,~Ok)] (9.24) M = ~ gs(k)sk + ~ lk 

From (9.19) and using (5.9) we could equally write 

Q ( e )  ~M = ~, gz(k)erff Y~M(Otc, ClPk) (9.25) 
k 

10. THE BEHAVIOR OF THE MULTIPOLE OPERATORS 
UNDER HERMITIAN CONJUGATION AND TIME REVERSAL: 

REALITY OF THE MATRIX ELEMENTS 

An irreducible tensor operator T, of rank A, may be defined in terms of 
the transformation of its components under rotation of the coordinate system. 
Using for the D matrices the convention of Bohr and Mottelson (1969) 

r; .  = Rr~.R -1 = ~, D".:.(~, /3, 7)T~, (10.1) 
it" 

Where T' is the tensor in the rotated system and R(a,/3, ~,) is the rotation 
operator in terms of the Euler angles a,/3, and V- 

Taking the Hermitian conjugate we obtain 

R(rait)*R-1 E Dau'"(a'/3' ),)(Tx,,)* E - "'-" ~" = = ( ) D _ . . _ i t ( a , / 3 ,  
/~' /M 

(10.2) 

and we can still write with p arbitrary (integer with h integer) 

R ( - ) ,  = Du'u(a,/3, 7) ( - ) "  + "'(Ta_,.)* (10.3) 

That is, the components (-)P+it(Ta-it)* transform under rotation of the 
coordinate system in the same way as the operator TA, and so having the 
correct rotational properties of a tensor operator. 
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Demandingp = h + 1, we shall define the components of the Hermitian 
conjugate T t of the tensor operator T by 

(T t )au  = ( _ ) ~  +u + I(T a- u)t (10.4) 

If Tam = (Tt)a# the operator is Hermitian. So, we may define a Hermitian 
tensor operator as one whose components satisfy 

(Ta.)* = (-)~+#+ITa-# (10.5) 

According to (9.2) and (9.3) the multipole operators -r(e) I j M  
f J(r). A~" d3r and ~'r<m)j~ = f J(r). Am* d3r satisfy the condition (10.5). On the 
other hand the operator t3(e) ~Ju as expressed in (9.19) satisfies 

With the definition above, as the tensor product of two tensor operators is 
formally identical to the coupling of two angular momentum eigenvectors, 
the product of two Hermitian operators is anti-Hermitian. In fact from 

#1(#2) 

we obtain 

All antiunitary operators, like the time-reversal operator ~,, can be 
written as the product UK of a unitary operator U, which does not act on 
positional coordinates, by the complex conjugate operator K (Wigner, 1959). 
To find the explicit form for ~-- we use the Schr6dinger equation 

i h ~ t = H ~ b  

It is easily proved that if there is a unitary transformation U such that 
UII*U -~ = H, time-reversal invariance holds and the time-reversal state of~b 
is UK~b. The effect of K is tied to the representation used. So the form of the 
time-reversal operator depends on the nature of the Hamiltonian of the system 
under consideration and on the representation in which the wave function is 
considered. For example, if we consider the interaction Hamiltonian (6.6) 
depending on terms of the form p. A and ~. V • A, obviously U has to con- 
tain the unitary operator U~ acting only on spin coordinates in such a way 
that 

Uoa*U71 = - ~  (10.6) 

and the unitary operator UA acting on the potential vector A in such a way 
that 

UAAU2 ~ = - A  (10.7) 
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In this example the time-reversal operator would have the form 

= UAUoK (10.8) 

Let us examine now the form of the operator U~. For  a spin-�89 particle 
the transformation properties (10.6) of the Pauli matrices (a~, %, a~) define 
U~ apart from a phase. 

We may write 

U, = i~  (10.9) 

This choice makes U~ real and so it commutes with K. 
In defining phase conventions in the angular momentum representation, 

it is convenient to relate the time-reversal operator to the rotation operator 
R~(~r) for an angle ~r about the y axis. We may rewrite the action of the 
operator Uo, for the special case of a spin-�89 state as a rotation by - ~r about 
the y axis (thus reversing the z axis) of spin alone 

U~ = icr~ = ei(~/2)% = e(i/n)~ = R~-Z(~r) (10.10) 

We may write 

and so we have 

3-xm~ = U~X~,  = ( - - ) ' m ~ x ; - ~ ,  

(10.11) 

(10.12) 

with xm~ the spinor wave function. 
The factor (_)~§ is sometimes replaced by (_)s-m~ that could corre- 

spond to the use of U~ = - iay, instead of (l 0.9). Of course, the overall phase 
of the time-reversal operator is itself a matter of convention. 

Next we shall consider the example of the transformation under time 
reversal of space-spin wave functions. For  a many-particle system of A 
spin-�89 particles we may choose a basis of single-particle states whose wave 
functions, for a potential with spherical symmetry, may be written 

Ijm) = R,~j(r) ~ (lm~smdjm)[i~Y~,(O,~)]X~ (10.13) 
,~,m~ 

The definition of the spherical harmonics witha differentphase, sayi Yzm(O, ~o), 
has always been assumed in this paper even when not explicitly stated. 
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The phases can always be chosen such that the radial wave function is 
real. From (10.12) and 

G'[i z Y~m,(0, go)] = K[i z Y~m~(O, cp)] = (_)~+m,[iz Yz-m,(O, go)] 

= e"l~)'~L~[it Yzm~(O, 9)] (10.14) 

and because the Clebsch-Gordan coefficients have the property 

( I  - mzs - mslj - m)  = (-)z+"-J(lrndmsljm) (10.15) 

our choice leads to 

,j-ljrn ) = ( _ y + m l j _  m) (10.16) 

From the adopted phase convention one finds that 

I JM)  = ~ ( j lml j2m2lJM)l j lmi) l j2m2)  
mlr~ 2 

satisfies the transformation (10.16)if ]jlmi> and Ij2m2) already transform in 
accordance with it. So, the function ]JM) constructed by combination of 
products of single-particle functions [jm) satisfies the same choice of phase. 
With 

A 

J" = 1-~ [i%(n)]K (10.17) 
~ = 1  

the many-particle wave function satisfies 

~--IJM) = ( - ) s + ~ l d -  M )  (10.18) 

We could have looked at this result as a consequence of having chosen, for a 
fixed value of J, the relative phase of the angular momentum states [JM) and 
I JM ' ) ,  writing (Condon and Shortley convention) 

J+[JM)  = [d(J + 1) - M ( M  + 1)]~'21JM +_ 1> (10.19) 

In fact, according to 

~--j~---1 = _ j ~  (10.20) 

we may write 

J=~JIJM) = - ~"J+ I J M )  

= --[J(J  + 1) -- M ( M  -T- t ) ] I /2y[JM -T- 1) (10.21) 

and with the transformation (10.18) the result (10.19) would be satisfied. 
The phase convention in (10.18) makes the phase real for both integral 

or half-integral values of J. 
Since 

R;~(rr)]jM) = e,/r~s~ljM ) = (_ )S+MIj_  M )  (10.22) 
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and with the phase conventions we have assumed, the time-reversed wave 
function is identical to the wave function obtained by rotation through the 
angle - ~  about the y axis. So, by choosing the phases suitably we arrive at the 
conclusion that the state ]JM)  is invariant under the combined operation 
R~(,Osr 

R~(70~-]JM ) = [JM)  (10.23) 

This choice corresponds to the so-called R~G" convention (Alder and Steffen, 
1975). 

From (6.5) and using 

Y,o,~ --~ = p, 3 - j J  "-1 = - j ,  ,Y'a.~ " - I  = - a  (10.24) 

one finds 
3-ZJ~J~ --1 = (-- )S + MT}=2M (10.25) 

where rr = e means electric and ~r = m means magnetic. 
In fact, when we wrote A in ~--~  ,(m) terms 0IASM and ,-x.7 M we were not concerned 

with the relative choice of phases but with a convenient right expansion. The 
requirement that the vector potential is odd under time reversal 

YA(r,  t ) J - 1  = _ A(r, - t) (10.26) 

makes, in particular, Maxwell's equations and also the electromagnetic 
interaction, Hi~t = - ( l / c ) f  J . A  dar, invariant under time reversal. 

Using the Wigner-Eckart theorem the matrix element of  the tensor 
operator may be written in terms of the reduced matrix element with the 
Clebsch-Gordan coefficient carrying the dependence on the orientation of 
coordinate frame. We obtain the result 

<4M lf j..om.l~,r M dar J ~ M ~ >  

J2M= " *<=) dar d . 1"~1M 

= ( - ) '+M+l<J=M= f J ' A } e u d a r J x M , >  

= (_)~+M+I (J~M,J~272_+l_~- MIJ2M=) ( lfj A} ~) dar J ~ >  (10.27) 

The reduced emission matrix element <&Ill J.A(9 d~rll3"l>, which we 
shall represent in what follows as (J2 ]l T)=)]] J*), is understood to be evaluated 
from that expression. 

From 
(n) j <J2MdT)M] 1M1) = <&Md(T)~)*I&M=>* (10.28) 

it follows that 

< & II T<,:, II J,> = ( - )q - ,= + s + ~ < Jl [l T)=, [[ J=> * (10.29) 
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I f  the phase conventions are chosen such that  the nuclear wave functions 
satisfy (10.18) we may write 

M T (~) M <J2 51 ,~lJ1 1) 
= <J2M213"- 1 J ' T ~ o  ~ ~3-1J1M1) 
= (_ ) ,=+~+,~+M~+s+~(& _ g d T j ~ , ] j ~  _ g l ) *  (10.30) 

Applying the Wigner-Eckart theorem to the right-hand side of (10.30) and 
using symmetry properties of the Clebsch-Gordan coefficients it follows that, 
with the phase conventions given above, the reduced matrix elements are real: 

(&IIT(?'IIJ1) = 4&IIT~(.)II&>* (10.31) 

and so using (10.29) 

(JzllzJ=)il&) = ( -  )sl-s~ + "+ lL&llzJ='l]Je) (10.32) 

F r o m  (9.21) and (9.23) we might  write (Steffen, 1971) the relation between 
the reduced matrix elements as defined above and the reduced matrix 
elements relative to the operators ~}~  as considered by Bohr and Mottelson 
(1969) 

[J  .-t- 1\1/2 hck' . ~:_~__) (jzll~e)ll&) 
(&l lZ? ' l l&> = i s (2J  + 1)!, 

(J2llT~m']lJ*) = - i s -  ~ (2J  + 1)!! (J2]]~}m)IIJ1) 
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